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Abstract

Should a decision-maker learn whether an information source is reliable?

I consider a persuasion game in which the sender is sometimes unreliable—

i.e., can covertly manipulate the signal used to persuade the receiver—and

the receiver can costlessly investigate the sender’s reliability. I show that the

receiver benefits from committing to investigations that do not always reveal

reliability. Even without the ability to commit to ignorance, I demonstrate that

the receiver benefits from delegating investigations to someone partially ad-

versarial to the sender and partially aligned with the receiver. My results shed

light on the efficacy of cross-examination, audits, and ad hominem arguments.

Suppose a receiver obtains a piece of information from a sender but is worried
that the information might not be reliable. Should the receiver investigate and learn
whether the information is reliable before deciding on an action?

Once the receiver has obtained the information, learning about reliability is be-
neficial because it allows him to avoid making decisions based on unreliable in-
formation.1 However, in many economic situations, the sender is likely to change
the kinds of information she provides based on what she expects the receiver to
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learn about reliability. In such situations, it need not be the case that the receiver
benefits from learning about reliability. For example, while courts can learn about
the reliability of witness evidence provided by the parties via cross-examination,
parties may produce different witnesses depending on whether and how they expect
the witnesses to be cross-examined. Similarly, sellers may make different market-
ing claims depending on how much they expect the buyers to audit their claims, and
politicians may change their arguments depending on their expectations about the
opposing politicians’ counter-arguments.

In this paper, I study a sender-receiver game of persuasion in which there is
doubt about the sender’s reliability, and the receiver first decides how much to in-
vestigate and learn about the sender’s reliability. I show that the receiver can benefit
from avoiding learning about the sender’s reliability because doing so allows the
receiver to trade off information about reliability (which he can obtain himself by
investigating) with information that he can only obtain from the sender. To take
advantage of the trade-off, however, the receiver must be able to fight his inherent
desire to learn. While the receiver can achieve this by committing to ignorance,
I also study what the receiver can achieve by delegating investigations to a third
party. To that end, I show that, although delegating investigations to an adversary
to the sender can be beneficial to the receiver, he is better off when the third party
is only partially adversarial to the sender and otherwise partially aligned with the
receiver. In fact, I show that the receiver can do just as well with delegation as when
he can commit if the third party has such “balanced” preferences.

To understand the implications of my results, let us first take the court con-
text. In many jurisdictions, the court effectively delegates cross-examinations of
witnesses to an adversary to the party that calls on the witness to testify. My results
suggest that such an adversarial system is more effective than if the court itself (i.e.,
the judge or the jury) were to directly cross-examine witnesses if the court lacks
the ability to commit to cross-examinations that do not seek to discover the truth
about the witness’ reliability.2 Moreover, my results also suggest that provisions

2One can also interpret my results as suggesting that adversarial cross-examination is unneces-
sary (and, in fact, weakly less preferred) if the court can commit to conducting cross-examinations
that do not seek to discover the truth.
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that align the adversarial cross-examiner’s interest with that of the court’s interests
can further increase the efficacy of cross-examination. In the buyer-seller context,
my results imply that buyers would be better off with audits that do not always re-
veal the reliability of the information provided by the seller either by conducting
audits themselves (if they can commit to ignorance) or by choosing an auditor with
adversarial incentives.

Related literature. This paper contributes to the rich literature on strategic
communication.3 In addition to a payoff-relevant state, I introduce uncertainty
about the sender’s (manipulative) behaviour in a probabilistic manner akin to mod-
els that relax the “commitment assumption” in Bayesian persuasion models (e.g.,
Frechette, Lizzeri and Perego, 2019; Min, 2021; and Lipnowski, Ravid and Shishkin,
2022).4 In my model, the receiver is able to induce the sender to provide more in-
formation (than without investigations) through a combination of the addition of
noise to the sender’s communication and the imperfect ability of the receiver to dis-
tinguish between truthful and noisy communication. While similar channels have
been explored in (mediated) cheap-talk games (e.g., Austen-Smith, 1994; Blume,
Board and Kawamura, 2007; Goltsman et al., 2009),5 a distinguishing feature of
my model (in addition to studying a different type of communication) is that, in ef-
fect, there is a second sender who adds noise by designing information (only) about
the uncertainty regarding the sender’s behaviour. The type of information that the
second sender provides also sets this paper apart from the existing literature on
multiple senders (e.g., Gerardi and Yariv, 2008; Che and Kartik, 2009; Gentzkow
and Kamenica, 2017a,b; Dworczak and Pavan, 2022), games in which the receiver
can design information about the payoff-relevant state (Ivanov, 2010b; Krähmer,
2021; Ivanov and Sam, 2022), and games in which the receiver can learn about the
veracity of the sender’s messages (e.g., Dziuda and Salas, 2018; Balbuzanov, 2019;
Ederer and Min, 2022; Levkun, 2022; Sadakane and Tam, 2022).6

3See surveys by Sobel (2013); Özdogan (2016); Kamenica (2019); Bergemann and Morris
(2019); Forges (2020).

4The commitment assumption in Bayesian persuasion (Kamenica and Gentzkow, 2011) refers
to the assumption that the sender will truthfully communicate the realisation of a chosen statistical
experiment (equivalently, a communication strategy) to the receiver.

5I thank an anonymous referee for pointing out this connection explicitly.
6Veracity refers to whether the sender uses messages in a way consistent with an exogenously
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That ignorance, or avoidance of information, can be beneficial for strategic reas-
ons has been observed in other contexts (e.g., Taylor and Yildirim, 2011; McAdams,
2012; Roesler and Szentes, 2017; Onuchic, 2022).7 This paper demonstrates that
avoiding information can also be beneficial in a sender-receiver game with unres-
tricted, costless communication while allowing the receiver to choose his signal
(i.e., investigation) based on the sender’s choice of an experiment.8

Following Schelling (1960), strategic delegation has been studied as a way to
mitigate or eliminate commitment issues in many contexts, including industrial or-
ganisations (Vickers, 1985; Fershtman and Judd, 1987; Sklivas, 1987) and mac-
roeconomics (Rogoff, 1985). In the context of mediated cheap-talk or disclosure
games, Ivanov (2010a), Ambrus, Azevedo and Kamada (2013) and Lichtig (2020)
find that a mediator or a second sender who is adversarial to the (first) sender can
induce the sender to provide more information. I study a different type of strategic
communication game and find similar results while also highlighting the import-
ance of the third party having a balanced—and not just adversarial—incentive.

I also bring new arguments based on strategic information considerations to the
literature that compares approaches to evidence across legal systems (Shin, 1998;
Dewatripont and Tirole, 1999; Posner, 1999), complementing a recent contribution
by Lichtig (2020) who studies a disclosure game. The model also brings new insight
into how audits can incentivise companies to provide more information in equilib-
rium.9 In contrast to existing models (e.g., Townsend, 1979; Mookherjee and Png,
1989; Border and Sobel, 1987), in my model, audits are costless and transfers are
not allowed, and audits are about the auditee’s reliability type and not about the
veracity of the auditee’s “messages.”

The remainder of the paper is structured as follows. In Section 1, I give an
illustrative example that demonstrates the intuitions behind the results and a more
detailed explanation of the results. In Section 2, I set out the model and I give char-
acterisations of equilibria when the receiver can and cannot commit to ignorance in

given meanings of messages.
7Golman, Hagmann and Loewenstein (2017) provides a recent survey.
8In Section 5, I show that the receiver can benefit from a partially revealing investigation even

without the ability to vary investigations based on the sender’s choice of an experiment .
9See Ye (2021) for a survey of economic models that describe the role of audits.
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Section 3. Section 4 deals with the delegation case. In Section 5, I provide some in-
terpretations of the results, as well as a discussion of extensions. I give a conclusion
in Section 6.

1 An illustrative example

To develop an intuition for the results, consider the following example in which
an institutional investor (receiver) is deciding whether to buy or not buy an asset.10

There are two states of the world: the asset is either good or bad. The investor gets
utility 1 for making the correct investment decision (buy when good and not buy

when bad) and 0 for making the wrong decision (buy when bad and not buy when
good). In contrast, the seller of the asset (sender) wants the investor to buy the asset
regardless of the state. Assume she gets utility 1 from the investor buying and 0
from not buying. The investor and the seller share a prior belief 0.3 that the asset is
good meaning that the investor would not buy the asset under the prior belief.

To persuade the investor to buy, the seller provides an investment appraisal (e.g.,
as part of the prospectus) to the investor that sets out an appraisal method as well as
the result of the appraisal analysis. Formally, an appraisal method is a signal struc-
ture, ξ = (ξ (·|good),ξ (·|bad)), specifying a distribution over possible results of
the appraisal analysis conditional on the state. An appraisal is thus a pair consisting
of an appraisal method ξ and the result. Suppose that there are only two possible
results of the appraisal: g (meaning good) and b (meaning bad); and that the seller
can only choose between three appraisal methods: the “Highly” informative (ξ H),
the “Mildly” informative (ξ M), and the “Least” informative (ξ L) methods, given by

ξ
H (g|good) = 1, ξ

M (g|good) = 1, ξ
L (g|good) = 1,

ξ
H (g|bad) = 0, ξ

M (g|bad) =
1
7
, ξ

L (g|bad) =
3
7
.

Observe that the three methods differ only on their rate of false positives (i.e., the
probability that the appraisal result is g when the asset is bad). Thus, the in-

10This example intentionally borrows from the courtroom example in Kamenica and Gentzkow
(2011).
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vestor, who prefers appraisal methods that are more informative, strictly prefers
ξ H over ξ M over ξ L. In contrast, the seller, who wishes to maximise the probabil-
ity that the investor buys the asset, prefers to choose the least informative method
that can persuade the investor into buying. Suppose that, having chosen a method
ξ ∈ {ξ H ,ξ M,ξ L}, with probability 0.2, the seller is unreliable and can falsify the
result of the analysis to her benefit. Because only the result g could persuade the
investor to buy the asset, the seller always manipulates the appraisal result to be
g when she can. On the other hand, with probability 0.8, the seller is reliable so
that the true result of the appraisal method ξ is communicated to the investor. The
investor is unable to tell whether the appraisal result he observes has been falsified
without conducting an audit.

No audit versus full audit. Without an audit, after the seller has chosen ξ ∈
{ξ H ,ξ M,ξ L}, the investor believes that the result g was drawn according to ξ with
probability 0.8 and chosen independently of the state with probability 0.2. The
seller’s (ex ante) payoff from a method is the probability that the investor buys the
asset, and her payoffs from (ξ H ,ξ M,ξ L) without audits are (0.44,0.52,0), respect-
ively.11 Hence, the seller chooses ξ M when the investor cannot audit the seller.
Suppose now that the investor conducts a full audit and finds out whether the seller
is reliable. When the investor finds out that the seller is unreliable, he ignores the
appraisal and does not buy the asset. Alternatively, when the investor finds out that
the seller is reliable, then he knows that the appraisal result was obtained using the
stated method and the investor can be persuaded to buy the asset. The seller’s pay-
offs from (ξ H ,ξ M,ξ L) with full audits are (0.24,0.32,0.48), respectively.12 There-
fore, the seller now chooses ξ L so that, from the investor’s perspective, finding out
the seller’s reliability leads the seller to choose a worse appraisal method.

11The investor’s posterior beliefs after seeing g for methods (ξ H ,ξ M,ξ L) are ( 15
22 ,

15
26 ,

15
34 ), re-

spectively. Hence, the investor only buys after seeing g under ξ ∈ {ξ H ,ξ M}. The seller’s payoff is
zero from ξ L, and her payoffs from choosing other methods are given by the respective probability
that the investor observes g.

12The investor’s posterior beliefs after seeing g for methods (ξ H ,ξ M,ξ L) are (1, 3
5 ,

1
2 ), respect-

ively. Hence, the investor buys upon seeing g and finding out that the seller is reliable, and the
seller’s payoffs are given by the respective probability of this event occurring.
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Partially ignorant audits. Consider how the investor can attain the ideal out-
come—i.e., finding out whether the seller is reliable after she has chosen ξ H . Sup-
pose that the investor publicly commits to an audit strategy that specifies the audit
that will be conducted as a function of the seller’s choice of an appraisal method.
Note first that the seller’s payoff from the investor’s ideal outcome is given by the
probability that the state is good and the sender is reliable; i.e., 0.24. To attain this
outcome, the investor must ensure that the seller’s payoffs from choosing ξ M and
ξ L are lower than 0.24. Observe that the investor can simply not audit the seller
when ξ L is chosen in which case the seller’s payoff is 0 < 0.24. To prevent the
seller from choosing ξ M, the investor can conduct an audit that reveals that the
seller is unreliable with probability 1, but only reveals that the seller is reliable with
some probability p ∈ [0,1).13 That p < 1 implies that the investor does not always
find out that the seller is reliable, and this type of audit makes it less likely that the
investor is persuaded to buy the asset. In particular, letting p = 0.5 minimises the
seller’s payoff from choosing ξ M to 0.16 < 0.24.14 Hence, the investor can obtain
the ideal outcome by using ignorance—in the form of avoiding learning that the
seller is reliable or avoiding learning altogether—as a way to punish the seller for
choosing ξ M and ξ L.

It is also possible for ignorance to be used as a reward for the seller choosing
the “correct” appraisal method. For example, if the probability that the seller is
unreliable is 0.1 (instead of 0.2 previously), it turns out it is no longer possible to
induce the seller to choose ξ H while also finding out the seller’s reliability.15 To
induce the seller to choose ξ H , the investor can conduct audits that do not always
reveal that the seller is unreliable; i.e., audits that reveal that the seller is reliable

13In this example, an audit is a binary-support signal structure about the seller’s reliability type.
Hence, an audit can be characterised by a pair (p,q) ∈ [0,1]2 with p ≥ 1− q, where p (resp. q) is
the probability that the audit reveals that the seller is reliable (resp. unreliable) when she is reliable
(resp. unreliable). A full audit corresponds to the pair (1,1) and no audit corresponds to the pair
(0.5,0.5).

14Given ξ M and (p,q) = (0.5,1), the investor finds it optimal to buy the asset only after seeing g
and the audit outcome indicating that the message is reliable. The probability of this event occurring
is 0.16.

15In this case, the lowest seller payoff that the investor can induce by being strategically ignorant
when the seller chooses ξ M is 0.28, which is strictly higher than the seller’s payoff of 0.27 under the
investor’s ideal outcome.
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with probability 1, but reveal that the seller is unreliable with probability q ∈ [0,1).
Then, letting q ≤ 2

3 ensures the seller’s payoff from choosing ξ H is greater than
0.28.16 Thus, when the seller is less likely to be unreliable, the investor strategically
uses ignorance as a way to reward the seller for choosing ξ H as well as a way to
punish the seller for choosing ξ M and ξ L. However, when the probability that the
seller is unreliable is even lower (e.g., 0.05), it becomes impossible for the investor
to ensure that the seller’s payoff from choosing ξ H is greater than her payoff from
choosing ξ M. In this case, the investor’s best option is to demand ξ M and find out
whether the seller is reliable (while not auditing ξ L).

Delegating audits. Once the seller has chosen a method, there is no strategic ad-
vantage to the investor from being ignorant. Hence, the sequentially rational audit
for the investor is the full audit. Thus, for the investor to directly implement the
audit strategy that induces the ideal outcome described in the previous paragraph,
the investor must be able to commit to being (sometimes) ignorant. However, even
without the ability to commit, the investor can still induce the seller to choose the
most informative method, ξ H , by delegating the audit to a third party who is at
least partially adversarial to the seller. For this example, let us consider the case in
which the third party is purely adversarial. Given any appraisal method, the sequen-
tially rational audit for a purely adversarial third party is to minimise the probability
that the investor buys; i.e., the adversary’s sequentially rational audit is maximally
punishing. When audits are sequentially rationally conducted by an adversary, the
seller’s payoffs from methods (ξ H ,ξ M,ξ L) are (0.16,0.16,0), respectively.17 Be-
cause the seller’s payoffs from choosing ξ H and ξ M are the same, it is possible
for the investor to induce the seller to choose ξ H by delegating audits to a purely
adversarial third party. Notice, however, that the investor is worse off than when he
could commit to ignorance because, while he is able to induce the sender to choose
ξ H , he does not always find out the reliability of the seller.

16For example, given ξ H and (p,q) = (1, 2
3 ), the investor finds it optimal to buy the asset only

after seeing g and the audit outcome that indicating that the message is reliable (in which case he is
certain that the seller is reliable). The probability of this event occurring is 0.28.

17The maximally punishing audit following ξ M and ξ L are as in the audit strategy that induces
the ideal outcome as described in the previous paragraph. Maximally punishing audit following ξ H

involves setting p = 2
3 . To be clear, the payoffs correspond to the case when the prior belief that the

seller is reliable is 0.2.
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Beyond the example. The main sender-receiver model in the paper maintains
the assumptions regarding state, actions and preferences while allowing the sender
(i.e., the seller in the example) to choose any statistical experiment about the state
(i.e., appraisal method) and the receiver (i.e., the investor) to choose any invest-
igation (i.e., audit). It turns out that restricting the sender to choosing from a set
of “one-sided” experiments, as in the example, is without loss. Moreover, be-
cause such experiments can be parameterised by their rate of false positives (i.e.,
ξ (g|bad)), they are also Blackwell ordered (Blackwell, 1953). Thus, even in the
main model, the conflict of interest with respect to the choice of the experiment
between the sender and the receiver can be thought of in terms of the rate of false
positives of experiments as in the example.

Using this simplification, I show that the result from the example—that the re-
ceiver can obtain more information by committing to investigation strategies that
involve ignorance as punishments and rewards—continues to hold. I also demon-
strate that, without the ability to commit to ignorance, the receiver is no better off
with the ability to investigate and learn about the sender’s reliability.18

I also extend the delegation case from the example and consider a third party
who can be partially adversarial to the sender and partially aligned with the re-
ceiver; i.e., a third party whose preference is a linear combination of the negative
of the sender’s payoff and the receiver’s payoff. I find that the receiver strictly
benefits from delegation investigation to a third party whose preferences are bal-
anced in this manner. This is because such balanced preferences of the third party
make it sequentially rational for it to conduct fully revealing investigations (that are
never optimal for a pure adversary) whenever the sender’s choice of an experiment
is more informative than a threshold (in terms of the rate of false positives). At
the same time, such a third party finds it sequentially rational to punish the sender
for choosing experiments (i.e., appraisal methods) that are less informative than
the threshold (which are the experiments that the sender would deviate to). Be-
cause the threshold depends on the relative weight the third party places on the

18In the example above, the investor was strictly worse off when finding out the seller’s reliability.
However, if the seller could have also selected ξ (g|good) = 1 and ξ (g|bad) = 2

7 , the investor would
have been indifferent between finding out the seller’s reliability and not finding out.
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receiver’s preferences, by delegating investigations to a third party with appropri-
ately balanced preferences, the receiver is able to credibly commit to finding out the
sender’s reliability while still inducing the sender to choose an informative exper-
iment. In fact, I find that, against a sufficiently unreliable sender, the receiver can
attain the same outcome with delegation as when he can commit to ignorance.

2 Model

There are two players: a Sender (S) and a Receiver (R). The Receiver can take
one of two actions, denoted a ∈ A := {0,1}, and the Receiver’s payoff from each
action depends on the binary states of the world, θ ∈ Θ := {0,1}. The preferences
are such that the Receiver’s optimal action is a = 1 (i.e., to take action) whenever
he believes that the state is θ = 1 with probability at least µ∗ ∈ (0,1); otherwise,
the Receiver’s optimal action is to choose a = 0 (i.e., to not take action). The
Sender would like the Receiver to choose a = 1 no matter the state. Let vS : A → R
and vR(a,θ) : A×Θ → R be the Sender and the Receiver’s payoffs, respectively,
where19

vR (a,θ) := a
θ −µ∗

µ∗ , vS (a) := a.

Let µ0 ∈ (0,1) denote the common prior probability that θ = 1.20 To make the
problem interesting, I assume that the Receiver does not take action under the prior
belief; i.e., µ0 < µ∗. If this condition does not hold, the Sender has no incentive to
provide any information and thus concerns about the reliability of the Sender be-
come moot. Given the normalisations, both the Sender’s and the Receiver’s default
payoffs under the prior beliefs are zero.

To persuade the Receiver to take action, the Sender publicly chooses a signal
structure ξ ∈ Ξ := (∆M)Θ, where M is a finite set of messages with at least two
elements. I refer to ξ as an experiment. The Sender can either be of type t = r

19I normalise the Receiver’s payoff from choosing a = 0 to be zero and his payoff from choosing
a = 1 when θ = 0 to be −1.

20Given an arbitrary set X , I use ∆X to denote the set of probability measures on the set X . Given
a measure ν ∈ ∆Θ, I denote its support as supp(ν) and sometimes abuse notation and use ν to denote
ν({θ = 1}).
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(for reliable) or u (for unreliable), with T := {r,u}. I let ρ0 ∈ (0,1) denote the
common prior probability that the Sender is reliable. A reliable Sender truthfully
communicates realisations from the experiment ξ to the Receiver. In contrast, an
unreliable Sender can communicate any message m ∈ M. The Receiver observes
the Sender’s message m without observing the Sender’s type.

Notice that a reliable Sender can commit to the announced experiment as in
Bayesian persuasion models (Kamenica and Gentzkow, 2011).21 In contrast, the
unreliable Sender lacks such commitment power. Thus, the higher the prior belief
ρ0 that the Sender is reliable, the “more” the Sender is committed to the announced
experiment. One can also interpret the prior belief ρ0 as capturing the imperfectness
in the enforcement of truthful communication (Min, 2021), or the possibility that
the Sender can indirectly alter the realisation of the experiment by influencing the
“experimenter” that carries out of the experiment (Lipnowski, Ravid and Shishkin,
2022). More generally, the prior belief ρ0 can be thought of as capturing the con-
flicting incentives that an experimenter might have in truthfully communicating the
results of the experiment to the Receiver.22 In addition, the prior ρ0 can also be
interpreted as the probability that the experimenter is competent; i.e., that the ex-
perimenter is capable of carrying out the experiment. Another interpretation of the
prior belief ρ0 is that it represents the probability with which the Sender is simply
corrupt and alters the result of the experiment.

Importantly, the Receiver can investigate the Sender’s type by using any sig-
nal structure about the Sender’s type. I take the belief-based approach (Kamen-
ica, 2019; Forges, 2020) and express investigations as Bayes-plausible distribu-
tions of posterior beliefs about the Sender’s type. I assume that the distributions
of posterior beliefs have finite support so that an investigation is an element in
I := {ι ∈ ∆([0,1]) :

∫
ρdι(ρ) = ρ0, |supp(ι)|< ∞} with a typical element ι . The

21Forges (2020) describes Bayesian persuasion as the case in which the statistical experiment
chosen by the sender is “fully reliable.”

22For example, on the one hand, the experimenter may have reputational or moral concerns that
guide them towards communicating truthfully. On the other hand, they may also have financial or
relational concerns (either via explicit payment or implicit payment in the form of future interactions
with the Sender) that guide them towards lying on behalf of the Sender. Under this interpretation,
the prior ρ0 captures the Sender’s and the Receiver’s common uncertainty about the combined effect
of these incentives on the experimenter’s behaviour.
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Receiver’s investigation strategy is a mapping from the Sender’s choice of an ex-
periment ξ to an investigation ι , which I denote as i : Ξ → I .23

In the next section, I consider two cases: the commitment case in which the
Receiver can commit to any investigation strategy, and the no-commitment case in
which the Receiver chooses an investigation after observing the Sender’s experi-
ment ξ in a sequentially rational manner.24

The timing of the game is as follows. In the commitment case, the Receiver first
publicly commits to an investigation strategy i(·). The Sender then publicly chooses
an experiment ξ ∈ Ξ. Nature then independently draws the state and the Sender’s
type, θ ∼ µ0 and t ∼ ρ0, respectively. If the Sender is reliable (i.e., t = r), then
the Sender truthfully communicates m drawn from ξ (θ). If the Sender is unreliable
(i.e., t = u), then the Sender chooses m ∈ M without observing the realised state.25

Finally, the Receiver observes the realisation of the investigation ρ drawn from i(ξ )

as well as the message from the Sender m, and chooses an action a ∈ A. All players
update beliefs using Bayes rule whenever possible. In the no-commitment case, the
Sender first publicly chooses an experiment and then the Receiver publicly chooses
an investigation ι ∈ I . The rest of the play is the same except that the Receiver
now observes the realisation of the investigation ρ drawn from ι .

Toward defining an equilibrium in the commitment case, call a weak perfect
Bayesian equilibrium (PBE) of the game induced by an investigation strategy i as
an i-equilibrium. I define a commitment equilibrium as a PBE that maximises the
Receiver’s payoff with respect to investigation strategy i and i-equilibria. I define
a no-commitment equilibrium as a PBE that maximises the Sender’s payoff among
PBE of games induced by some experiment ξ ∈ Ξ.26

23More generally, an investigation strategy could also depend on the realisation of the experi-
ment. As discussed in section 5, the Receiver does not benefit from this additional flexibility and
I therefore simplify the exposition by assuming that an investigation strategy only depends on the
Sender’s choice of an experiment.

24I also study the delegation case in which a third party chooses an investigation after observing
ξ in a sequentially rational manner in section 4.

25The results do not change materially if the Sender observes her type prior to choosing an
experiment or the unreliable-type Sender can observe the realised state (see section 5).

26I give the formal definitions of equilibria under the two cases in the appendix.
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3 Optimal ignorance about sender’s reliability

3.1 No-commitment case

Consider first the case the Receiver chooses an investigation after observing the
Sender’s choice of an experiment in a sequentially rational manner. In this case,
there is no strategic consideration for the Receiver when choosing an investigation.
Thus, the standard argument—more information is always better for a decision-
maker—means that the Receiver’s optimal investigation is fully revealing. Moreover,
because the Receiver ignores the Sender’s message whenever he learns that the
Sender is unreliable (which occurs with probability 1− ρ0), the Sender’s optimal
experiment in the no-commitment case corresponds to the optimal experiment when
she is known to be fully reliable (i.e., the Bayesian persuasion case).27 The follow-
ing result is then immediate.28

Theorem 1. The Receiver’s no-commitment equilibrium payoff is zero. In any no-

commitment equilibrium, the Sender chooses her optimal experiment when she is

known to be fully reliable and the Receiver finds out the Sender’s reliability.

Consider now the case in which the Receiver cannot investigate the Sender’s
reliability. In this case, the optimal experiment for the Sender is to provide “just
enough” information so as to leave the Receiver always indifferent between taking
action and not taking action.29 Thus, the Receiver’s payoff in this case is zero.
Combining this observation with the fact that the Receiver’s payoff is zero without
any information from the Sender gives the corollary below.

27That the Receiver is no better off when fully learning relies on the fact that the Receiver’s action
is binary (see Proposition 5 in Kamenica and Gentzkow, 2011). Moreover, even if there was an
upper bound on the informativeness of the Receiver’s investigations, the Receiver’s no-commitment
equilibrium payoff would still be zero—the Receiver without the ability to commit to ignorance
would continue to investigate to the full extent possible and the Sender can provide less information
to exactly offset the Receiver’s benefit from learning about reliability.

28I give all proofs of the results in this paper in the appendix. I focus on the Receiver’s equi-
librium payoff in the main body of the paper. The Sender’s equilibrium payoff can be found in the
appendix.

29The result readily follows from Theorem 1 in Lipnowski, Ravid and Shishkin (2022).
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Corollary 1. The Receiver is indifferent among the following cases: (i) the Sender

provides no information; (ii) the Receiver cannot investigate; and (iii) the no-

commitment case.

In particular, Corollary 1 means that, when the Receiver cannot commit to
avoiding learning, he does not at all benefit from the ability to learn about the
Sender’s reliability.

3.2 Commitment case

I now consider the case in which the Receiver is able to commit to an investigation
strategy. The main result is the following which establishes that, in contrast to the
no-commitment case, the Receiver strictly benefits from the ability to investigate
the Sender’s reliability. In fact, whenever the Sender is sufficiently unreliable, the
Receiver is able to obtain his ideal outcome—i.e., the Sender choosing the fully
informative experiment under a fully revealing investigation. To state the result, let
V R denote the Receiver’s payoff from the ideal outcome, and let V maxmin

S denote
the Sender’s maximal payoff against an investigation strategy that minimises the
Sender’s payoff.

Theorem 2. For any ρ0 ∈ (0,1), the Receiver’s commitment equilibrium payoff is

V ∗
R = min

{
V R,

µ0
µ∗ [(1−µ0)ρ0 +V maxmin

S ]−V maxmin
S , µ0

µ∗ −V maxmin
S

}
> 0, (1)

In particular, the Receiver’s commitment equilibrium payoff is strictly positive for

every interior prior belief, ρ0, about the Sender’s reliability. Moreover, for suffi-

ciently low ρ0, the Receiver is able to induce the Sender to choose the fully inform-

ative experiment while simultaneously finding out the Sender’s reliability on the

equilibrium path.

To prove the theorem, I first establish the following lemma which shows that
it suffices to focus on experiments that make action recommendations and that are
“one-sided” as in the example in the introduction.
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Lemma 1. Any strictly positive commitment equilibrium payoffs are attainable

with an experiment ξ ∈ Ξ such that for some m0,m1 ∈ M, supp(ξ ) = {m0,m1},

ξ (m1|1) = 1, ξ (m1|0)≤ 1− µ∗−µ0
µ∗(1−µ0)

, and the unreliable Sender always sends m1.

In proving the lemma, I establish a revelation principle in games induced by
any experiment-investigation pair (ξ , ι) ∈ Ξ×I . Note that one cannot appeal to
existing arguments (see, for example, Bergemann and Morris, 2019) to establish
Lemma 1 because, in my model, information is effectively being designed by two
distinct players. I therefore provide an original proof in the appendix and give a
sketch of the proof here. Given any pair (ξ , ι) ∈ Ξ×I , call a tuple (σ ,α,µ) an
(ξ , ι)-equilibrium if it is a PBE of the game induced by (ξ , ι), where σ is the un-
reliable Sender’s messaging strategy, α is the Receiver’s action strategy and µ is
a belief map. The main step of the proof is to show that any tuple (σ ,α,µ) that
is a (ξ , ι)-equilibrium can be reduced to a payoff-equivalent tuple (σ̃ , α̃, µ̃) that is
a (ξ̃ , ι)-equilibrium where ξ̃ ∈ Ξ makes action recommendations, σ̃ ∈ ∆M always
recommends the Receiver to take action, and ι remains optimal for the Receiver
against ξ̃ . Having established that the restricting attention to experiment with bin-
ary messages does not reduce the set of equilibrium payoffs, I show that any equi-
librium experiment ensures that the probability of not taking action when the state
is θ = 1 is zero, i.e., ξ (m1|1) = 1, because both players’ interests are aligned in
minimising such an event.

Any experiment in the class of experiments identified in Lemma 1 can be uniquely
parameterised by a scalar ρ̂ ∈ [ρ,1], with ρ := µ∗−µ0

µ∗(1−µ0)
, by defining ξρ̂ : [ρ,1]×

Θ → ∆({m0,m1}) as

ξρ̂ (m1|1) := 1, ξρ̂ (m1|0) := 1− 1
ρ̂

ρ.

The scalar ρ̂ that identifies the experiment ξρ̂ can in fact be interpreted as the
threshold for the posterior belief about the Sender’s reliability above which the Re-
ceiver takes action after observing m1; i.e., the Receiver takes action if he observes
a message (ρ,m1) with ρ ≥ ρ̂ . The experiments in Lemma 1 are also totally ordered
according to the Blackwell order and this ordering corresponds to the ordering by
ρ̂—with lower ρ̂ corresponding to more Blackwell informative experiments. In
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particular, ρ̂ = ρ identifies the fully informative experiment while ρ̂ = 1 identifies
the Sender-preferred Bayesian persuasion experiment (i.e., the Sender-optimal ex-
periment when the Sender is initially known to be fully reliable). In what follows,
I identify the Sender’s choice of an experiment from the class of experiments in
Lemma 1, ξ ∈ {ξρ̂}ρ̂∈[ρ,1], with the associated parameter ρ̂ ∈ [ρ,1]. I also refer
to commitment equilibria using ρ̂: with slight abuse of notation, I say that (ρ̂, i)
is a commitment equilibrium if (ξρ̂ , i) is part of a commitment equilibrium, where
i : [ρ,1]→ I .

Let us now consider how the Receiver can induce the Sender to choose some
experiment ρ̂ ∈ [ρ,1] while conducting an investigation ι ∈ I . Clearly, the Re-
ceiver must ensure that the Sender’s payoff from choosing any ρ̂ ′ ̸= ρ̂ is lower than
her payoff from choosing ρ̂ using an appropriate investigation strategy. Moreover,
because any investigation following ρ̂ ′ ̸= ρ̂ is off the equilibrium path, it suffices
to consider investigation strategies that maximally punish the Sender for choosing
any experiment other than ρ̂ . To induce the Sender to choose ρ̂ , the Receiver must
ensure that the Sender’s payoff under (ρ̂, ι) is at least as high as her best possible de-
viation against a maximally punishing investigation, which is given by the Sender’s
maxmin payoff, denoted V maxmin

S . The following lemma establishes the Sender’s
maxmin payoff.

Lemma 2. The Sender’s maxmin payoff is given by

V maxmin
S = max

{
0,
(

1− µ∗−µ0
µ∗

1
ρ̂maxmin

)
ρ0−ρ̂maxmin

1−ρ̂maxmin

}
,

where ρ̂maxmin = max
{

ρ,
(

1+
√

µ0
µ∗−µ0

1−ρ0
ρ0

)−1
}
∈ [ρ,ρ0).

To prove the result, for each ρ̂ ∈ [ρ,1], I first define the Sender’s value corres-

pondence associated with the Sender choosing the experiment ρ̂ as the correspond-
ence VS(·|ρ̂) : [ρ,1]⇒ R that maps the Receiver’s posterior belief about reliability
to the set of payoffs that the Sender can attain given that the unreliable Sender and



17

the Receiver best respond; i.e.,30

VS (ρ|ρ̂) := co
({

vS(a) : a ∈ argmax
a′∈A

ṽR(a′|ρ̂,ρ))
})

,

where ṽR(a|ρ̂,ρ) := ∑θ∈Θ vR(a,θ)[ρξρ̂(m1|θ) + (1− ρ)]µ0(θ) is the Receiver’s
interim payoff from choosing action a ∈ A after the Sender has chosen an experi-
ment ρ̂ ∈ [ρ,1] and the Receiver observes (ρ,m1). Standard arguments (Aumann
and Maschler, 1968; Kamenica and Gentzkow, 2011) mean that the minimal pay-
off for the Sender that can be induced by some investigation ι ∈ I is given by
the convex envelope of the function minVS(·|ρ̂) evaluated at the prior ρ0,31 de-
noted vexV S(ρ̂).

32 The Sender’s maxmin payoff is then obtained by maximising
vexV S(ρ̂) with respect to ρ̂ .

Given the arguments above, the Receiver’s commitment equilibrium payoff can
be obtained by maximising the Receiver’s expected payoff with respect to a can-
didate on-the-equilibrium-path experiment ρ̂ ∈ [ρ,1] and an investigation ι ∈ I

subject to the Sender attaining at least her maxmin payoff. The following lemma
further simplifies the Receiver’s problem by reducing the Receiver’s choice of an
investigation to a choice of a scalar. The lemma also shows that, on the equilibrium
path, the Receiver either does not investigate the Sender or conducts a partially
informative investigation that always reveals that the Sender is reliable but only
sometimes reveals that the Sender is unreliable. Intuitively, the latter type of in-
vestigation is the most efficient way for the Receiver to give up information about
reliability while increasing the Sender’s payoff because the two players are only
conflicted in their desires to reveal (or hide) the case when the Sender is unreliable.

30I denote the convex hull of a set as co(·).
31The function minVS(·|ρ̂) is well defined because VS(·|ρ̂) is non-empty- and compact-valued.
32I show in the appendix that the punishing investigation from the illustrative example—in which

the Receiver either does not conduct an investigation or conducts a partially informative investigation
that always reveals that the sender is unreliable but only sometimes reveal that that the sender is
reliable—are indeed the investigations that induce the convex envelope of minVS(·|ρ̂).
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Lemma 3. Any commitment equilibrium payoff can be obtained with a class of

investigations given by {ι∗(z) : z ∈ [ρ0,1]} ⊆ I , where

ι
∗ (z) :=





ρ0
z δz +

ρ0
z−ρ0

δ0 if z ∈ (ρ0,1]

δρ0 if z = ρ0

.

The lemma above means that the Receiver’s commitment equilibrium payoff is
the solution to the following problem:

max
(ρ̂,z)∈[ρ,1]×[ρ0,1]

∫ 1

0
VR (ρ|ρ̂)dι

∗ (z)(ρ) (2)

s.t.
∫ 1

0
maxVS (ρ|ρ̂)dι

∗ (z)(ρ)≥V maxmin
S ,

where VR(·|ρ̂) := maxa′∈A ṽR(a′|ρ̂,ρ)) is the Receiver’s value function associated
with Sender’s experiment ρ̂ ∈ [ρ,1]. In the appendix, I show that the solution to the
problem above is given by (1). Moreover, I also show that, for any µ∗ and µ0 with
µ∗ > µ0, there exist cutoffs for the prior belief ρ0,1,ρ0,2 ∈ [ρ,1] with ρ0,1 < ρ0,2

such that the solution to the Receiver’s problem, (ρ̂∗,z∗), is given by:33

(ρ̂∗,z∗) =





(
ρ,1
)

if ρ0 ∈ (0,ρ0,1](
ρ, ρ0

V maxmin
S +(1−µ0)ρ0

)
if ρ0 ∈ (ρ0,1,ρ0,2)(

µ∗−µ0
µ∗

ρ0
1−V maxmin

S
,ρ0

)
if ρ0 ∈ [ρ0,2,1)

(3)

Observe that, when the Sender is sufficiently unreliable (i.e., ρ0 ≤ ρ0,1),34 the Re-
ceiver is able to attain his ideal outcome (i.e., the fully informative experiment under
the fully revealing investigation). In contrast, when the Sender is sufficiently reli-
able (i.e., ρ0 ≥ ρ0,2), the Receiver is willing to give up learning about the Sender’s
reliability completely in order to induce the Sender to choose a more informative

33In the appendix, I show that there exists ρ0,0 ∈ (0,ρ0,1) such that V maxmin
S = 0 for any ρ0 ∈

(0,ρ0,0] and V maxmin
S is strictly positive for all ρ0 ∈ (ρ0,1,1).

34Similar comparative statics results hold if I instead vary µ∗ and µ0: an increase in ρ0 is ana-
logous to an increase in µ∗ and a decrease in µ0.
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experiment. At intermediate prior beliefs (i.e., ρ0,1 < ρ0 < ρ0,2), while the Receiver
is able to induce the Sender to choose the fully informative experiment, he does so
at the cost of not fully learning about the Sender’s reliability.

The intuition for Theorem 2, and in particular (3), is the following. When the
Receiver cannot investigate, the Sender chooses ρ̂ = ρ0 < 1 because doing so en-
sures that the Receiver takes action with probability one after observing m1. Thus,
when there is more doubt about the Sender’s reliability (i.e., a lower ρ0), the Sender
is willing to choose a more informative experiment even without any investiga-
tion. In other words, the Sender has a stronger prior incentive to choose a more
informative experiment when ρ0 is low. Hence, when ρ0 is low (i.e., ρ0 ≤ ρ0,1),
the Receiver need not give up the benefit of being able to learn the Sender’s type
and thus can obtain the ideal payoff. However, when ρ0 is high (i.e., ρ0 > ρ0,1),
the Sender has a weaker prior incentive to choose the fully informative experiment,
and the Receiver must give up the benefit of being able to learn the Sender’s type
to induce the Sender to choose the fully informative experiment. When ρ0 is suffi-
ciently high (i.e., ρ0 > ρ0,2), the Receiver is willing to give up all the benefits from
investigating. It turns out that the Receiver is willing to give up information about
the Sender’s reliability first—which, after all, is of second-order importance to the
Receiver—before giving up information about the payoff-relevant state.

Figure 1 shows how the Receiver’s commitment equilibrium varies with the
prior belief about reliability ρ0 when µ∗ = 0.5 and µ0 = 0.3 as in the example from
Section 1.

Figure 1: Receiver’s commitment equilibrium payoff, V ∗
R .
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Note that the Receiver’s commitment equilibrium payoff is necessarily non-
monotonic in ρ0 because the Receiver’s equilibrium payoffs when ρ0 = 0 or when
ρ1 = 1 are zero. Figure 1 also shows that the Receiver’s payoff is concave—i.e., the
Receiver’s commitment equilibrium payoff is greatest for intermediate prior belief
about the Sender’s reliability.35

4 Implementing ignorance via delegation

Let us now introduce a third player, whom I refer to as the Third Party (T, it),
into the original game, and let the Third Party (instead of the Receiver) choose
investigations about the Sender’s reliability. I refer to this modified game as the
delegation game. The timing is as in the no-commitment case of the original game,
except that it is now the Third Party that chooses an investigation ι ∈ I having
observed the Sender’s experiment, and the Receiver simply chooses his action after
observing the Sender’s message and the realisation of the investigation. The Third
Party’s preference is a linear combination of the Sender’s and the Receiver’s payoffs
with weights λ j ∈ R on player j ∈ {S,R}’s payoff.36

I focus on the case where the Third Party is adversarial; i.e., λS < 0. I therefore
normalise the weight on the Sender’s preference as λS = −1 and let λ ≥ 0 denote
the weight on the Receiver’s preference. I refer to a Third Party whose weights
are (λS,λR) = (−1,λ ) as a λ -balanced Third Party. I refer to a 0-balanced Third
Party as being purely adversarial and a ∞-balanced Third Party as being purely

Receiver-aligned.37 I call an equilibrium of the delegation game with a λ -balanced
Third Party a λ -equilibrium and define it analogously to the no-commitment equi-
librium of the original game. Importantly, the simplification in Lemma 1 applies
with respect to equilibrium payoffs in the delegation game.

Let us first compare the two extreme types of a Third Party: the purely Receiver-

35One can further show that the prior belief about reliability ρ0 that maximises the Receiver’s
commitment equilibrium lies in the interval [ρ0,1,ρ0,2].

36With no restrictions on the Third Party’s preference, the Receiver can attain the commitment
outcome trivially by delegating to a Third Party whose payoff is constant.

37See the discussion in section 5 for the case when the Third Party is purely Sender-aligned (i.e.,
λS > 0 and λR = 0).
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aligned and the purely adversarial Third party. The following proposition estab-
lishes that the Receiver is never worse off by delegating investigations to a purely
adversarial Third Party; in fact, the Receiver strictly benefits from such adversarial
delegation whenever the Sender is sufficiently reliable.

Proposition 1. The Receiver prefers delegating investigations to a purely adversarial

Third Party over a purely Receiver-aligned Third Party—strictly so if ρ0 ∈ (ρ,1).

The proof follows readily from previous results. Notice first that, if the Third
Party is purely Receiver aligned, then ∞-equilibrium payoffs correspond to no-
commitment equilibrium payoffs in the original game. Thus, the Receiver’s delega-
tion equilibrium payoff is zero by Theorem 1. Moreover, since a purely adversarial
Third Party maximally punishes the Sender for any choice of experiment, one can
compute the Receiver’s 0-equilibrium payoff by recalling from the proof of Lemma
2 how the Sender behaves when she expects to be maximally punished.

Can the Receiver do better by delegating to a λ -balanced Third Party with λ ∈
(0,∞)? The next result, in particular, shows that there exists a unique λ ∗ > 0 that
maximises the Receiver’s equilibrium payoff in the delegation game. Moreover,
when the Sender is sufficiently unreliable (i.e., ρ0 is sufficiently low), the Receiver’s
λ ∗-equilibrium coincides with his commitment equilibrium payoff.

Theorem 3. For any ρ0 ∈ (0,1), there exists λ ∗(ρ0) > 0 such that the Receiver’s

and the Sender’s λ -equilibrium payoff is given by

V λ
R =





0 if λ < λ ∗ (ρ0)

1
1+λ ∗(ρ0)

µ0
µ∗ ρ0 if λ ≥ λ ∗ (ρ0)

Hence, the Receiver strictly prefers to delegate investigations to a λ ∗(ρ0)-balanced

Third Party over any other λ -balanced Third Party. Moreover, whenever the prior

belief that the Sender is reliable, ρ0, is sufficiently low, the Receiver’s λ ∗-equilibrium

payoff coincides with the Receiver’s commitment equilibrium payoff.
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To understand the intuition for the result, define a correspondence V λ
T : [ρ,1]⇒

R as the λ -balanced Third Party’s value correspondence associated with Sender’s
experiment ρ̂ ∈ [ρ,1]:38

V λ
T (·|ρ̂) :=−VS (·|ρ̂)+λ {VR (·|ρ̂)} .

Figure 2 depicts the λ -balanced Third Party’s value correspondence.39 Standard
arguments mean that a λ -balanced Third Party’s payoff from a sequentially rational
investigation is given by the concave envelope of the correspondence V λ

T (·|ρ̂). It
is immediate from Figure 2 that: if V λ

T (1|ρ̂) is nonnegative (resp. nonpositive),
then the λ -balanced Third Party’s sequentially rational investigation is the fully re-
vealing investigation (resp. the punishing investigation that minimises the Sender’s
payoffs).

Figure 2: Third Party’s value correspondence payoff: V λ
T (·|ρ̂).
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Importantly, I show that, for any λ > 0, there exists ρ̂λ such that V λ
T (1|ρ̂) ≥ 0

if and only if ρ̂ ≤ ρ̂λ . Consequently, a λ -balanced Third Party finds it sequentially

38Since VS is a correspondence, the summation in the expression is a Minkowski sum.
39To understand the shape of a λ -balanced Third Party’s value correspondence, recall that the

Receiver strictly prefers to not take action for any posterior belief ρ < ρ̂ . Hence, VT(ρ|ρ̂) = {0} for
all ρ < ρ̂ . At ρ = ρ̂ , the Receiver is indifferent between taking action and not taking action, and the
Sender’s payoff from the Receiver taking action is given by µ0

µ∗ > 0. Therefore, VT(ρ̂|ρ̂) = [− µ0
µ∗ ,0].

Since the Receiver strictly prefers to take action for any ρ > ρ̂ , VT(ρ|ρ̂) is single-valued and, viewed
as a function, VT(·|ρ̂) is right-continuous at ρ = ρ̂ . Recalling the definition of ṽR, both the Sender’s
and the Receiver’s payoffs increase linearly with ρ .
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rational to conduct the fully revealing investigation whenever the Sender chooses a
more informative experiment than ρ̂λ and maximally punish the Sender for choos-
ing a less informative experiment than ρ̂λ . Since the Sender prefers a less inform-
ative experiment for any given investigation, against a λ -balanced Third Party, the
Sender would never choose an experiment that is more informative than ρ̂λ . The
proof is completed by showing that the Sender does not find it profitable to deviate
to a less informative experiment ρ̂λ and face maximal punishment. Since ρ̂λ de-
pends on λ , by delegating investigations to a Third Party with an appropriate weight
λ on the Receiver’s preference, the Receiver can induce the Sender to choose the
most informative experiment under the fully revealing investigation.

Figure 3 shows how the Receiver’s λ -equilibrium payoff change with λ when
µ0 = 0.3, µ∗ = 0.5 and ρ0 = 0.8.

Figure 3: Receiver’s λ -equilibrium payoff, V λ
R :=VR(ρ̂

λ , iλ (ρ̂λ )).

When the weight on the Receiver’s payoff is small (λ < λ ∗ = λ ∗(ρ0)), a λ -
balanced third party behaves as a purely adversarial Third Party so that the Re-
ceiver’s payoff is equal to his 0-equilibrium payoff. However, the Receiver’s λ -
equilibrium payoff “jumps” up at λ = λ ∗ because the Third Party now finds it op-
timal to conduct the fully revealing investigation on the equilibrium path. Moreover,
given the parametric assumptions, the Receiver’s λ ∗-equilibrium payoff equals the
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ideal payoff, V R, which, in turn, equals the Receiver’s commitment equilibrium
payoff. As λ increases beyond λ ∗, the Receiver’s payoff decreases and converges
to zero (i.e., the no-commitment equilibrium payoff) as λ becomes large.

Figure 4 compares the Receiver’s: λ ∗-equilibrium payoff (denoted V λ ∗
R ), 0-

equilibrium payoff (V 0
R), commitment equilibrium payoff (V ∗

R), and his ideal payoff
(V R); when µ0 = 0.3 and µ∗ = 0.5.

Figure 4: Receiver’s optimal delegation equilibrium payoff, V λ ∗
R .

The Receiver can obtain the commitment equilibrium payoff (that equals his
ideal payoff) whenever ρ0 ≤ ρ0,1. However, when ρ0 > ρ0,1, the Receiver’s pay-
off is lower in the λ ∗-equilibrium because it is not sequentially rational for any
λ -balanced Third Party to conduct a partially revealing investigation of the form
ι∗z that the Receiver with the ability to commit to investigation strategies would
choose. The difference between V ∗

R and V λ ∗
R therefore represents the loss arising

from the Third Party’s inability to commit to ι∗z on the equilibrium path. However,
notice that the Receiver does better in λ ∗-equilibrium than in 0-equilibrium (i.e.,
when the Third Party is purely adversarial). This difference arises because a purely
adversarial Third Party conducts a maximally punishing investigation even on the
equilibrium path.
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5 Discussion

5.1 Interpretations of the results

Cross-examinations. Courts rely on witnesses to provide information about factual
or technical matters concerning cases. A perennial worry, however, is that witnesses
do not provide sufficient or reliable information. One prominent way courts deal
with this concern is through cross-examinations in which a witness is interrogated
by an attorney, usually from the opposing party, whose purported goal is to test the
reliability of the witness (and consequently the reliability of the evidence provided
by the witness). Cross-examination is an important feature of the US court sys-
tem and has famously been described as the “greatest legal engine ever invented
for the discovery of truth” (Wigmore, 1904).40 Similarly, in the US, parties can
challenge the admissibility of expert evidence through a Daubert challenge.41 The
consequence of being found unreliable can range from partial exclusion to a full
exclusion of the witness evidence (i.e., impeachment). Between 2000 and 2021,
there were 3,342 cases of Daubert challenges specifically against financial expert
witnesses, and 43% of these challenges resulted in the partial or full exclusion of
the expert (PricewaterhouseCoopers, 2022). The latter statistic, in particular, un-
derscores the fact that outcomes of cross-examinations are not always predictable
because they do not always lead to exclusions of the witness. It can also be the case
that cross-examinations backfire and lead the court to believe the witness is more
reliable than they had initially thought.

The features of cross-examination described above are consistent with how the
Receiver in my model learns about the Sender’s reliability using investigations.
My results therefore highlight the role of cross-examination as not only a way to
learn the reliability of witnesses, but also as a way for the court to obtain more
information by inducing the parties to select more informative witnesses. In this
light, my results have implications for the efficacy of cross-examination as an en-

40Wigmore (1904) was the dominant source of US evidentiary law until the codification of the
Federal Rules of Evidence in 1975 (Friedman, 2009).

41A Daubert challenge is a type of motion to exclude expert witness testimony (scientific or
otherwise) on the basis that it represents unqualified evidence (Daubert v. Merrell Dow Pharma-
ceuticals, Inc., 509 U.S. 579, 1993; Kumho Tire Co. v. Carmichael, 526 U.S. 137, 1999).
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gine for the discovery of truth. Theorem 1 implies, perhaps surprisingly, that a
cross-examination conducted by a judge may not help the court obtain additional
information. Theorems 1 and 2 together suggest that, for the judge to be an effect-
ive cross-examiner, he must paradoxically be able to commit to not discovering the
truth about the witness’ reliability.

In case the judge cannot commit, Proposition 1 suggests that delegating cross-
examinations to an adversarial third party, as is in fact done in the US and other
jurisdictions, allows the court to circumvent this commitment issue. Moreover, The-
orem 3 suggest that there is a significant benefit in ensuring that the cross-examiner
is not only adversarial but also cares about the discovery of truth. To this end, in
the US, for example, prosecutors have a dual role as advocates seeking a conviction
and as “ministers of justice” (Fisher, 1988), and the courts have also recognised that
prosecutors have a special duty not to impede the truth (Gershman, 2001). In some
jurisdictions (e.g., Germany), the court system is described as being inquisitorial (as
opposed to adversarial as in the US) meaning that judges often direct the debates
by asking questions. To the extent that a combination of the opposing party and an
“inquisitorial judge” can be considered a balanced third party, Theorem 3 gives a
reason to prefer an inquisitorial legal system over an adversarial system. Of course,
the lesson from Theorem 1 applies—the judges must refrain from always finding
out the truth about the reliability of witnesses.

The model predicts different kinds of cross-examinations depending on the
cross-examiner’s ability to commit—and in the case without commitment—the
weight λ the cross-examiner places on the court arriving at just decisions. For ex-
ample, the ideal cross-examiner who can commit would not cross-examine the wit-
ness when the prior belief that the witness is reliable is sufficiently high. While this
prediction appears reasonable, the model also predicts that such a cross-examiner
would be willing to hide that the witness is unreliable (with intermediate beliefs
about reliability), which is perhaps less reasonable. If we instead assume that the
cross-examiner cannot commit and is strongly adversarial (i.e., λ < λ ∗), then we
should expect the cross-examiner to be less willing to provide evidence that sug-
gests that the witness is reliable. In contrast, a cross-examiner who also cares more
about the court arriving at just decisions (i.e., λ ≥ λ ∗) would be willing to provide
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such evidence. While we sometimes observe that prosecutors provide evidence that
supports the defendant’s innocence, there appear to be fewer instances in which the
prosecutor provides evidence that supports the reliability of the defendant’s witness.
To the extent that my model, which is a significant simplification of the complex
legal system in real life, has some empirical content, the discussion above suggests
that reality might be most consistent with the case in which the cross-examiner does
not have the ability to commit and is strongly adversarial.

Audits. An audit of a piece of information, such as financial statements or
investment appraisals, involves an examination of whether a particular method was
followed to produce the information at hand. By interpreting the sender’s choice
of an experiment as a choice of such a method, an investigation into the sender’s
reliability can be thought of as a type of audit. Importantly, in my model, auditing
is costless and is not about the veracity of the sender’s message but rather about
the sender’s reliability type. Theorem 1 suggests that an unfettered audit when
conducted by the receiver (or by an auditor whose incentives are aligned with that
of the receiver) might not be beneficial because such an audit can result in the sender
choosing a less informative method that negates the receiver’s benefit from being
able to identify unreliable information. Theorem 2 characterises how audits that
are not always fully revealing can induce the sender to adopt a more informative
method that provides the receiver with more information in equilibrium. Finally,
Theorem 3 suggests how the receiver can implement such an auditing strategy by
ensuring that the auditor balances his preference for the receiver and his antagonism
toward the sender appropriately. I also note that delegating audits may alleviate the
coordination problem that might arise if a group of investors (as opposed to a single
investor) is considering whether to buy the seller’s asset.

Ad hominem arguments. Because investigations are about the nature of the
sender, they can be thought of as examples of ad hominem (i.e., “to the person”)
counter-arguments against the Sender’s ad rem (i.e., “to the point”) arguments. Un-
der this interpretation, one can think of the Sender as being, for example, a politician
making statements about an issue, and the investigations as being about the politi-
cian (e.g., whether the politician is a flip-flopper) and not about the political issue
itself. Such uses of ad hominem counter-arguments are prevalent in many debates.
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In this light, one can interpret the results in this paper as concerning: (i) the ex-
tent to which ad hominem arguments are effective as counter-arguments by looking
at the effect of investigations on the Sender’s payoff, and (ii) the extent to which
ad hominem arguments are productive by looking at the effect of investigations on
the Receiver’s payoff. The results from the delegation game show that ad hominem

counter-arguments can be both effective and productive. The latter is perhaps sur-
prising given that ad hominem arguments are often criticised for being fallacious.
In the political context, one can think of a media outlet that opposes the politician
as an example of an adversarial third party. My results demonstrate how such a
media outlet can help the voters by inducing the politician to speak more truthfully.
Moreover, the results also suggest that rules that prevent outlets from making ad

hominem arguments may, in fact, harm the voters.

5.2 Extensions

Investigation strategies that can depend on the realisation of the Sender’s ex-
periment. In some cases, an investigation is chosen after the Receiver has observed
the Sender’s message; e.g., a cross-examiner is able to read the witness statement
before cross-examining the witness. Formally, such a case corresponds to the in-
vestigation strategy being a function of both the Sender’s choice of an experiment
as well as the Sender’s message. In the online appendix,42 I show that the Receiver
is no better off with this additional flexibility. The result follows from the fact that
it remains sufficient for the Sender to make action recommendations even against
investigation strategies that can be conditioned on message realisations.

Character witnesses. The US Federal Rules of Evidence 608 states that: “A
witness’s credibility may be [...] supported by testimony about the witness’s repu-
tation for having a character for truthfulness or untruthfulness...” One can think of
testimony in support of the witness’ credibility as information provided by a purely
Sender-aligned Third Party; i.e., a (λS,λR)-balanced Third Party with λS > 0 and
λR = 0. In the online appendix,43 I show that while the Sender can benefit from hav-
ing such a Third Party (strictly so in cases the Receiver would ignore the Sender’s

42See Section 1 in the online appendix.
43See Section 2 in the online appendix.
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message without any information, i.e., ρ0 < ρ), the Receiver does not benefit and
his payoff is zero.

Sender who observes her type before choosing an experiment. Suppose the
Sender observes her type before choosing her experiment. In this case, the Sender
can potentially signal her type by choosing experiments according to her realised
type. However, because the Sender cannot benefit from being identified as the unre-
liable type by the Receiver, the unreliable Sender would never choose an experiment
that differs from the one that the reliable Sender chooses. It follows that there al-
ways exists an outcome-equivalent pooling equilibrium of the signalling version of
the game. Thus, whether the sender knows her type before choosing an experiment
would not affect the results.

Unreliable Sender who can observe the state. In some situations, it may be
reasonable to assume that the unreliable Sender observes the realisation of the state
before choosing how to manipulate:44 e.g., a product reviewer might observe the
quality of the product before deciding whether/how to (mis)communicate to the
buyers about the quality for the manufacturer’s benefit.

If the unreliable Sender can observe the state, then her messaging strategy is
now a mapping σ : Θ → ∆M. The change allows for the possibility that an (ξ , ι)-
equilibrium exists in which σ is informative. While this complicates the analysis,45

one can show that, for any (ξ , ι)-equilibrium in which σ is informative, there exists
a slight perturbation of ι , ι ′ ∈ I , such that σ is not part of any (ξ , ι ′)-equilibrium.
Consequently, even if the Sender is able to improve her payoff by choosing an
informative σ for some ι , the Receiver can prevent such a strategy from being
part of an equilibrium. Thus, it follows that both the Sender’s and the Receiver’s
payoffs must be higher in any equilibrium in which σ is informative. But the same
argument as when investigations can depend on the messages means that such an
equilibrium does not exist. Thus, whether the Sender can observe θ is unimportant
for the results.

44When the unreliable Sender can observe the state before choosing a message, she behaves
exactly as the sender in Crawford and Sobel (1982).

45For example, it is no longer guaranteed that the unreliable Sender would only send messages
that would induce the Receiver to take action when the message is known to have been drawn from
ξ . Moreover, ξ and σ are no longer necessarily Blackwell ordered.
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Receiver with limited commitment. In some situations, it may not be pos-
sible for the Receiver to condition the investigation on the Sender’s experiment.
For example, this might be because the Receiver must commit to an investigation
before the Sender chooses an experiment (e.g., a regulator committing to a rule that
applies to all regulated entities) or because the Sender’s experiment is unobserv-
able (e.g., the experiment is the Sender’s private communication strategy). One can
model these situations by assuming that the Receiver must commit to a constant
investigation strategy. Whether the Receiver benefits from this limited commitment
depends on whether the Sender can observe the result of the investigation prior to
choosing the experiment.

To see why, suppose that the Receiver has committed to an investigation ι ∈I .
Consider first the timing in which the Sender observes the result of the investigation
before choosing an experiment. Then, every possible ρ in the support of ι induces
a subgame in which the Receiver cannot investigate the Sender, and the prior belief
that the Sender is reliable is ρ . By Corollary 1, the Receiver’s payoff in such a
game is always zero. It follows that the Receiver is unable to benefit from limited
commitment under this timing.

Suppose now that the Sender does not observe the result of the investigation
before choosing an experiment. Since the Receiver can always implement a con-
stant investigation strategy in the commitment case, the Receiver’s payoff in this
case must be weakly lower than the Receiver’s commitment equilibrium payoff. A
pertinent question is thus whether the Receiver benefits from investigations when
he must commit to a single investigation. In the online appendix,46 I show that the
Receiver’s equilibrium payoff, even in this case, is strictly positive for any interior
prior belief about reliability, and that the optimal investigation has either two or
three beliefs in its support.

Costly investigations. The results are robust to the addition of fixed cost of
investigations to the model. Specifically, with a fixed cost of investigations, either
the Receiver would not conduct an investigation (so that his payoff is zero) or the
Receiver investigates as characterised in the case with costless investigations (and
his payoff is lower by the fixed cost of investigating). With variable costs of invest-

46See Section 3 in the online appendix.
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igations, the outcome would depend, in general, on the specification of the costs.
In particular, it is possible to specify costs that make the Receiver’s optimal invest-
igation strategy (in the commitment case) sequentially rational for the Receiver.47

Thus, my assumption that investigations are costless can be viewed as a way to
ensure that investigation costs do not give the Receiver the ability to commit to
ignorance.

6 Conclusion

I show in this paper that a decision-maker should not always learn the reliability
of a strategic information source using a persuasion game in which the conflicted
source of information is sometimes unreliable. Strategically committing to avoiding
learning about reliability allows the decision-maker to obtain more information by
trading off information about reliability, which is of second-order importance, with
information about the payoff-relevant state, which is of first-order importance. Even
when the decision-maker is unable to commit to ignorance, I show that he can obtain
more information—sometimes as much as when he can commit—by delegating
investigations to someone partially adversarial to the sender and partially aligned
with the receiver. My results shed light on the efficacy of cross-examination, audits,
and ad hominem arguments.

47For example, this is possible using costs that depend both on the choice of the sender’s experi-
ment and the investigations.
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A Appendix

A.1 Formal definitions of commitment and no-commitment equi-
libria

Let σ : Ξ×I → ∆M denote the unreliable Sender’s messaging strategy, α : Ξ×
I ×[0,1]×M →∆A denote the Receiver’s action rule, and µ : Ξ×I ×[0,1]×M →
∆Θ denote the Receiver’s belief map. Given a tuple (ξ , ι ,σξ ,ι ,αξ ,ι),48 let Vj(·)
denote player j ∈ {S,R}’s associated ex ante payoff; i.e.,

Vj(·) := ∑
θ∈Θ

∫ 1

0
∑

m∈M
∑
a∈A

v j(·)αξ ,ι(a|ρ,m)[ρξ (m|θ)+(1−ρ)σξ ,ι(m)]dι(ρ)µ0(θ).

For the commitment case, let us call the game that follows after the Receiver
has chosen an investigation strategy i as an i-commitment game. A PBE of a i-
commitment game is a tuple (ξ ,σ·,i(·),α·,i(·),µ·,i(·)) that satisfies the following con-
ditions: (i) for each ξ ′ ∈ Ξ, the belief map µξ ′,i(ξ ′)(·) : [0,1]×M → ∆Θ is derived
by updating µ0 using the signal structure ρξ ′+(1−ρ)σξ ′,i(ξ ′) : Θ → ∆M via Bayes
rule whenever possible, i.e., for all (ρ,m) ∈ supp(i(ξ ′))×M,

µξ ′,i(ξ ′) (·|ρ,m) =

[
ρξ ′ (m|·)+(1−ρ)σξ ′,i(ξ ′) (m)

]
µ0 (·)

∑θ∈Θ

[
ρξ ′ (m|θ)+(1−ρ)σξ ′,i(ξ ′) (m)

]
µ0 (θ)

whenever the denominator is strictly positive, and otherwise µξ ′,i(ξ ′)(·|ρ,m)= µ0(·);49

(ii) the Receiver’s action rule α·,i(·) is optimal given µ·,i(·), i.e., for all (ξ ′,ρ,m) ∈
Ξ× supp(i(ξ ′))×M,

supp
(
αξ ′,i(ξ ′) (ρ,m)

)
⊆ argmax

a∈A
∑

θ∈Θ

vR (a,θ)µξ ′,i(ξ ′) (θ |ρ,m) ;

(iii) the Unreliable Sender’s messaging strategy σ·,i(·) is incentive compatible given

48I define σξ ,ι(·) := σ(ξ , ι); αξ ,ι and µξ ,ι are defined analogously.
49The assumption that off-equilibrium-path belief equals the prior belief reflects the idea of “no

signalling what you don’t know” (Fudenberg and Tirole, 1991) since off-equilibrium-path messages
can only be sent by the unreliable Sender who neither observes the realised state nor the realisation
of the experiment.
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α·,i(·), i.e., for all ξ ′ ∈ Ξ,

supp
(
σξ ′,i(ξ ′)

)
⊆ argmax

m∈M

∫ 1

0
∑
a∈A

vS (a)αξ ′,i(ξ ′) (a|ρ,m)
1−ρ

1−ρ0
di
(
ξ
′)(ρ) ; (IC)

(iv) the Sender’s experiment is sequentially rational given i, σ·,i(·) and α·,i(·), i.e.,
ξ maximises VS(ξ

′, i(ξ ′),σξ ′,i(ξ ′),αξ ,i(ξ ′)) with respect to ξ ′ ∈ Ξ. I refer to a tuple
(ξ , i,σ·,i(·),α·,i(·),µ·,i(·)) as a commitment equilibrium if (ξ ,σ·,i(·),α·,i(·),µ·,i(·)) is a
PBE of the i-commitment equilibrium that maximises Receiver’s ex ante payoff
among any PBE of any i′-commitment game.50

For the no-commitment case, call the game that follows after the Sender chooses
an experiment ξ ∈ Ξ a ξ -no-commitment game. A PBE of a ξ -no-commitment
game is a tuple (ι ,σξ ,·,αξ ,·,µξ ,·) that satisfies the following conditions: (i) for each
ι ′ ∈ I , the belief map µξ ,ι ′(·) : [0,1]×M → ∆Θ is derived by updating µ0 using
the signal structure ρξ +(1−ρ)σξ ,ι ′ : Θ → ∆M via Bayes rule whenever possible,
and otherwise µξ ,ι ′(·|ρ,m) = µ0(·); (ii) Receiver’s action rule αξ ,· is optimal given
µξ ,·; (iii) the Unreliable Sender’s messaging strategy σξ ,· is incentive compatible
given αξ ,·; (iv) the Receiver’s investigation ι is sequentially rational given σξ ,· and
ρξ ,·, i.e., ι maximises VR(ξ , ι

′,σξ ,ι ′,αξ ,ι ′) with respect to ι ′ ∈ I . I refer to a tuple
(ξ , ι ,σξ ,·,αξ ,·,µξ ,·) as a no-commitment equilibrium if (ι ,σξ ,·,αξ ,·,µξ ,·) is a PBE
of the ξ -no-commitment game that maximises Sender’s ex ante payoff among any
PBE of any ξ ′-no-commitment game.

Observe that the Receiver’s commitment-equilibrium payoff is an upper bound
on the Receiver’s no-commitment-equilibrium payoff.51

A.2 Proof of Theorem 1

I first establish that given any Sender’s experiment and the unreliable Sender’s
strategy, a more informative investigation results in a mean-preserving spread of

50Allowing the Receiver to select an i-equilibrium given any i(·) (as implied by the definition
above) ensures that a solution to the problem above exists.

51To see this, take any arbitrary set of ξ ′-no-commitment equilibria (ιξ ′ ,σξ ′,·,αξ ′,·,µξ ′,·) for each
ξ ′ ∈Ξ and construct an investigation strategy as i(ξ ′)= ιξ ′ for all ξ ′ ∈Ξ. Observe that the Receiver’s
commitment equilibrium payoff must be weakly higher than in any i-commitment equilibrium.
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induced beliefs. In proving the lemma, I allow the unreliable Sender’s strategy to
potentially depend on θ ; i.e., the unreliable Sender can observe the realisation of
state before choosing the message.

Lemma 4. Fix any ξ ,σ ∈ Ξ and ι , ι ′ ∈ I such that ι is a mean-preserving spread

of ι ′. Then, the distribution of posterior beliefs about the state induced by (ξ ,σ , ι)

is a mean-preserving spread of that induced by (ξ ,σ , ι ′).

Proof. Let N be a finite message space about the Sender’s reliability that is suffi-
ciently rich and let η ,η ′ : T → ∆N be the signals that induce distributions of pos-
terior beliefs ι and ι ′ respectively. By Blackwell’s theorem, η ′ is a garbling of η ;
i.e., there exists g : N → ∆N such that

η
′ (n|t) = ∑

n′
g
(
n|n′
)

η(n′|t).

Given ξ ,σ ∈ Ξ and η , the Receiver’s posterior joint belief about the state and
Sender’s type is given by

ν (θ ,r|m,n) =
ξ (m|θ)η (n|r)ρ0µ0 (θ)

∑θ ′∈Θ [ξ (m|θ ′)η (n|r)ρ0 +σ (m|θ ′)η (n|u)(1−ρ0)]µ0 (θ ′)
,

ν (θ ,u|m,n) =
σ (m|θ)η (n|u)(1−ρ0)µ0 (θ)

∑θ ′∈Θ [ξ (m|θ ′)η (n|r)ρ0 +σ (m|θ ′)η (n|u)(1−ρ0)]µ0 (θ ′)
.

Thus, the Receiver’s marginal belief about the state given any (m,n) in the support
is

µ (θ |m,n) := ∑
t∈T

ν (·, t|m,n)

=
[ξ (m|θ)η (n|r)ρ0 +σ (m|θ)η (n|u)(1−ρ0)]µ0 (θ)

∑θ ′∈Θ [ξ (m|θ ′)η (n|r)ρ0 +σ (m|θ ′)η (n|u)(1−ρ0)]µ0 (θ ′)
.

Hence, beliefs about the state are updated after observing (m,n) as if the pair was
drawn according to signal structure πξ ,σ ,η ∈ Ξ such that

π
ξ ,σ ,η (m,n|θ) := ξ (m|θ)η (n|r)ρ0 +σ (m|θ)η (n|u)(1−ρ0) .
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Using the fact that η ′ is a garbling of η ,

π
ξ ,σ ,η ′

(m,n|θ , t)

= ξ (m|θ)
(

∑
n′∈N

g
(
n|n′
)

η
(
n′|r
)
)

ρ0 +σ (m|θ)
(

∑
n′∈N

g
(
n|n′
)

η
(
n′|u
)
)
(1−ρ0)

= ∑
n′∈N

g
(
n|n′
)[

ξ (m|θ)η
(
n′|r
)

ρ0 +σ (m|θ)η
(
n′|u
)
(1−ρ0)

]
︸ ︷︷ ︸

=πξ ,σ ,η (m,n′|θ)

.

If we let f : M×N → ∆(M×N) be

f
(
m′,n′|m,n

)
:= 1{m′=m}g

(
n′|n
)

we realise that πξ ,σ ,η ′
is a garbling of πξ ,σ ,η via f . ■

Theorem 1 follows almost immediately from the previous lemma.

Theorem 1. In any no-commitment equilibrium, the Sender chooses her optimal

experiment when she is known to be fully reliable, ρ̂∗ = 1, and the Receiver al-

ways conducts the fully revealing investigation. The Sender’s and Receiver’s no-

commitment equilibrium payoffs are ρ0
µ0
µ∗ and zero, respectively.

Proof of Theorem 1. The previous lemma, together with Blackwell’s theorem, im-
plies that the sequentially rational investigation for the Receiver is always fully
revealing in any no-commitment equilibrium; i.e., i(·) = ι := ρ0δ1+(1−ρ0)δ0. By
condition (i),

µ
(
1|ξ ′, ι ,0, ·

)
= µ0, µ

(
1|ξ ′, ι ,1, ·

)
= µ

ξ (1|·) .

Moreover, condition (iii) is moot because the unreliable Sender’s payoff is always
zero. Moreover,

VS
(
ξ
′, ι ,σ ,α

)
= ρ0 ∑

m
∑
θ ′

α (1|ξ , ι ,1,m)ξ
(
m|θ ′)

µ0
(
θ
′) .

Observe that the Sender’s problem given above is equivalent to the Sender’s prob-
lem in the case when ρ0 = 1 except for the coefficient ρ0 in Sender’s payoff.
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Thus, the Sender-optimal-fully-reliability experiment, ρ̂ = 1, is optimal for the
Sender. ■

A.3 Proof of Lemma 1

Given any π ∈ Ξ, let µπ denote the posterior belief induced by signal structure π .
First, observe that µσ = µ0 because the unreliable Sender’s strategy cannot depend
on the realised state θ . It follows that the unreliable Sender would only send mes-
sages that would induce the Receiver to take action if the message is known to have
been sent by the reliable Sender; i.e., supp(σ) ⊆ Mξ

1 := {m ∈ M : µξ (m) ≥ µ∗}.
Because µσ (m) = µ0 < µ∗, for any m ∈ Mξ

1 , there exists a threshold belief about
the Sender’s type, ρm ∈ [0,1], at which the Receiver is indifferent between the two
actions after observing m, and would only be willing to take action if ρ ≥ ρm.
The unreliable Sender’s payoff is (weakly) decreasing in ρm. Moreover, the unre-
liable Sender’s incentive compatibility requires that ι([ρm,ρm′]) = 0 for all such
m,m′ ∈ Mξ

1 . Because pooling messages in Mξ

1 (in both ξ and σ ) results in a
threshold that is a weighted average of the cutoffs {ρm}m∈Mξ

1
, it follows that the

unreliable Sender’s payoff remains unchanged. This, in turn, implies that both the
Sender’s and the Receiver’s ex ante payoffs are unaffected when pooling messages
in Mξ

1 . That the unreliable Sender never sends messages in {m ∈ M : µξ (m)< µ∗}
means that these messages can also be pooled without affecting payoffs. Let ξ̃ and
σ̃ denote the strategies after pooling. The proof is completed by showing that the
pooling of messages does not affect the choice of investigation. Specifically, I show
that if there exists ι̃ ∈I such that the Receiver’s (ξ̃ , ι̃)-equilibrium payoff is differ-
ent from his (ξ̃ , ι)-equilibrium payoff, then one can construct a (ξ , ι̃)-equilibrium
in which the Receiver’s payoff is the same as in the (ξ̃ , ι̃)-equilibrium.

Recall that, given any (ξ , ι)∈Ξ×I , a tuple (σξ ,ι ,αξ ,ι ,µξ ,ι) is a (ξ , ι)-equilibrium
if it is a PBE of the game induced by (ξ , ι). For brevity, I write (σ ,α,µ) ≡
(σξ ,ι ,αξ ,ι ,µξ ,ι). Fix some (ξ , ι) ∈ Ξ ×I . Denote the unreliable and reliable
Sender’s interim payoffs from sending message m ∈ M given (σ ,α), respectively,
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as follows:

Vu (m|ξ , ι ,σ ,α) :=
∫

[0,1]
α (1|ξ , ι ,ρ,m)

1−ρ

1−ρ0
dι (ρ) ,

Vr (m|ξ , ι ,σ ,α) :=
∫

[0,1]
α (1|ξ , ι ,ρ,m)

ρ

ρ0
dι (ρ) ,

where 1−ρ

1−ρ0
ι(ρ) (resp. ρ

ρ0
ι(ρ)) is the probability that posterior belief ρ is induced

when the Sender is unreliable (resp. reliable). These two interim payoffs combine
to give the Sender’s ex ante payoff from (σ ,α):

VS (ξ , ι ,σ ,α)

= ρ0 ∑
m∈M

Vr (m|ξ , ι ,σ ,α)ξ (m)+(1−ρ0)
∫

Vu (m|ξ , ι ,σ ,α) ∑
m∈M

σ (m|ξ , ι) ,

where ξ (m) := ∑θ∈Θ ξ (m|θ)µ0(θ). The Receiver’s payoff is

VR (ξ , ι ,σ ,α)

=
1−µ∗

µ∗ µ0 ∑
m∈M

∫

[0,1]
α (1|ρ,σ ,m)ρxξ (m)dι (ρ)

+
1−µ∗

µ∗ µ0 ∑
m∈M

∫

[0,1]
α (1|ρ,σ ,m)(1−ρ)

µ0 −µ∗

µ0 (1−µ∗)
σ (m)dι (ρ) ,

where
xξ (·) := ξ (·|1)−ξ (·|0) 1−µ0

µ0

µ∗

1−µ∗ ∈ ∆M.

Define

Mξ

1 :=
{

m ∈ supp(ξ ) : xξ (m)≥ 0
}
, Mξ

0 :=
{

m ∈ supp(ξ ) : xξ (m)< 0
}
.

Observe that, for any m ∈ supp(ξ ),

µ
ξ (m)≥ µ

∗ ⇔ xξ (m)≥ 0;

and Mξ
a represents the set of messages that can induce the Receiver to choose action



42

a ∈ A when the Receiver’s belief about the Sender’s reliability is ρ = 1. Define

ρ (m|ξ ,σ) :=
µ∗−µ0

µ0(1−µ∗)σ (m)

µ∗−µ0
µ0(1−µ∗)σ (m)+ xξ (m)

.

Then, for any m1 ∈ Mξ

1 ,

µ
ρξ+(1−ρ)σ (1|m1)≥ µ

∗ ⇔ ρ ≥ ρ (m|ξ ,σ) ;

and for any m0 ∈ Mξ

0 ,

µ
ρξ+(1−ρ)σ (1|m0)< µ

∗ ∀ρ ∈ [0,1] .

It follows that, for any m1 ∈ Mξ

1 and m0 ∈ Mξ

0 ,

Vu (m1|ξ , ι ,σ ,α) (4)

=
∫

[0,1]

[
1(ρ(m1|ξ ,σ),1] (ρ)+α (1|ρ (m1|ξ ,σ) ,m1)1{ρ(m1|ξ ,σ)} (ρ)

] 1−ρ

1−ρ0
dι (ρ) ,

Vr (m1|ξ , ι ,σ ,α) (5)

=
∫

[0,1]

[
1(ρ(m1|ξ ,σ),1] (ρ)+α (1|ρ (m1|ξ ,σ) ,m1)1{ρ(m1|ξ ,σ)} (ρ)

] ρ

ρ0
dι (ρ) ,

Vu (m0|ξ , ι ,σ ,α)

= 0 =Vr (m0|ξ , ι ,σ ,α) .

The following lemma shows that pooling messages do not affect equilibrium pay-
offs.

Lemma 5. Fix (ξ , ι) ∈ Ξ ×I . Suppose (σ ,α,µ) is a (ξ , ι)-equilibrium with

strictly positive Sender ex ante payoff. There exists a tuple (σ∗,α∗,µ∗) that is a
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(ξ̃ , ι)-equilibrium such that, for some m̃1 ∈ Mξ

1 and m̃0 ∈ Mξ

0 , we have

ξ̃ (m|·) :=





ξ

(
Mξ

1 |·
)

if m = m̃1

ξ

(
Mξ

0 |·
)

if m = m̃0

0 otherwise

, σ
∗ (m|·) := 1{m=m̃1},

and

Vj (ξ , ι ,σ ,α) =Vj

(
ξ̃ , ι ,σ∗,α∗

)
∀ j ∈ {S,R} .

Proof. That the Sender’s ex ante payoff is strictly positive implies that the unreli-
able Sender’s interim payoff must be strictly positive, Mξ

1 ,M
ξ

0 ̸=∅, and supp(σ)⊆
Mξ

1 . Fix some m̃1 ∈ supp(σ)∩Mξ

1 and define ξ̃ and σ∗ as given in the statement of
the lemma. Define

ρmin (ξ ,σ) := min
m∈supp(σ)∩Mξ

1

ρ (m|ξ ,σ) , ρmax (ξ ,σ) := max
m∈supp(σ)∩Mξ

1

ρ (m|ξ ,σ) .

Let mmin and mmax be such that ρmin = ρmmin
and ρmax = ρmmax

.
Consider the case when supp(σ) = Mξ

1 . Then, pooling messages in Mξ

1 to m̃1

results in a threshold reliability belief, ρ(m̃1|ξ̃ ,σ∗), that is a weighted average of
the thresholds under (ξ ,σ); i.e.,

ρ(m̃1|ξ̃ ,σ∗) = ∑
m1∈Mξ

1

µ∗−µ0
µ0(1−µ∗)σ (m1)+ xξ (m1)

∑m′
1∈Mξ

1

(
µ∗−µ0

µ0(1−µ∗)σ
(
m′

1
)
+ xξ

(
m′

1
))ρ (m1|ξ ,σ)

∈ [ρmin (ξ ,σ) ,ρmax (ξ ,σ)] .

For any m1,m′
1 ∈ Mξ

1 such that ρm1
= ρm′

1
< 1, the unreliable Sender’s incentive

compatibility implies that

0 =Vu (m1|ξ , ι ,σ ,α)−Vu
(
m′

1|ξ , ι ,σ ,α
)

=
∫

[0,1]

(
α
(
1|ρm1

,m1
)
−α

(
1|ρm′

1
,m′

1

)) 1−ρm1

1−ρ0
ι
({

ρm1

})
.

Hence, if ι(ρm1
) > 0, we must have α(1|ξ , ι ,ρm1

,m1) = α(1|ξ , ι ,ρm′
1
,m′

1). If,
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instead, we have ρm′
1
> ρm1

, then the unreliable Sender’s incentive compatibility
implies that

0 =Vu (m1|ξ , ι ,σ ,α)−Vu
(
m′

1|ξ , ι ,σ ,α
)

=
∫
(

ρm1
,ρm′

1

)
1−ρ

1−ρ0
dι (ρ)+α

(
1|ξ , ι ,ρm1

,m1
) 1−ρm1

1−ρ0
ι
({

ρm1

})

+
[
1−α

(
1|ρm′

1
,m
)] 1−ρm′

1

1−ρ0
ι

({
ρm′

1

})
.

Above implies that (i) ι((ρm1
,ρm′

1
)) = 0, (ii) if ι({ρm1

})> 0, then
α(1|ξ , ι ,ρm1

,m1)= 0; (iii) if ρm′
1
< 1 and ι({ρm′

1
})> 0, then α(1|ξ , ι ,ρm′

1
,m)= 1.

If ρmin(ξ ,σ) = ρmax(ξ ,σ), then ρ(m̃1|ξ̃ ,σ∗) = ρmin(ξ ,σ). It cannot be that
ρmin(ξ ,σ) = 1 in this case because that would imply that xξ (m1) = 0 for all m1 ∈
Mξ

1 so that the unreliable Sender’s incentive compatibility requires ι(1) = 1; but
this contradicts that ι ∈ I . Hence,

α
∗ (1|·, m̃1) = α

∗ (1|·,mmin)

and clearly, players payoffs remain unchanged. Now suppose that ρmin(ξ ,σ) <

ρmax(ξ ,σ). Then, we must have

ι ((ρmin (ξ ,σ) ,ρmax (ξ ,σ))) = 0

and that if ι(ρmin) > 0, then α(1|ξ , ι ,ρmin,m1) = 0 for any m1 ∈ Mξ

1 such that
ρm1

= ρmin. Since ρmax < 1 (otherwise Vu(mmax|ξ , ι ,σ ,α) = 0, which contra-
dicts the earlier observation that the unreliable Sender’s interim payoff is strictly
positive), if ι(ρmax) > 0, then α(1|ξ , ι ,ρmax,m1) = 1 for any m1 ∈ Mξ

1 such that
ρm1

= ρmax. Hence, I can let

α
∗ (1|ρ, m̃1) = 1{ρ>ρ(m̃1|ξ̃ ,σ∗)} (ρ)
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so that

Vu

(
m̃1|ξ̃ , ι ,σ∗,α∗

)

=
∫

(ρ(m̃1|ξ̃ ,σ∗),1]

1−ρ

1−ρ0
dι (ρ)

+α
∗
(

1|ρ(m̃1|ξ̃ ,σ∗), m̃1

)

︸ ︷︷ ︸
=0

1−ρ(m̃1|ξ̃ ,σ∗)
1−ρ0

ι

(
ρ(m̃1|ξ̃ ,σ∗)

)

=
∫

(ρ(m̃1|ξ̃ ,σ∗),1]

1−ρ

1−ρ0
dι (ρ) =

∫

(ρmin,1]

1−ρ

1−ρ0
dι (ρ)

=Vu (mmin|ξ , ι ,σ ,α) ;

i.e., players payoffs are again unchanged from pooling messages in supp(σ)∩Mξ

1

to m̃1.
Suppose now there exists m′′ ∈ Mξ

1 \supp(σ) such that xξ (m′′) > 0. Then, by
the unreliable Sender’s incentive compatibility, it must be that Vu(m) = 1 for all
m ∈ supp(σ). By the argument above, pooling messages in supp(σ)∩Mξ

1 would
not affect the Sender’s incentives. Moreover, putting weights on Mξ

1 \supp(σ) to
m̃1 can only lower ρ̃ , which, in turn, can only weakly improve the payoffs. Since
Vu is already ideal at one, it follows that pooling messages would not alter the
players’ payoff. Finally, suppose there exists m′′ ∈Mξ

1 \supp(σ) such that xξ (m′′) =

0. Because pooling m′′ would not alter ρ̃ , players’ payoffs remain unchanged. To
ensure that (σ∗,α∗,µ∗) is a (ξ̃ , ι)-equilibrium, I can specify off-path µ∗ to equal
µ0 and ensure that α∗ is optimal for the Receiver given µ∗. ■

Remark 1. Suppose (σ ,α,µ) and (σ ′,α ′,µ ′) are both (ξ , ι)-equilibria, the players’
equilibrium payoffs are equal if

ρmin (ξ ,σ) = ρmin
(
ξ ,σ ′) , ρmax (ξ ,σ) = ρmax

(
ξ ,σ ′) .

I now show that pooling messages using the lemma above would not affect the
choice of an investigation.

Lemma 6. Fix (ξ , ι) ∈ Ξ ×I . Suppose (σ ,α,µ) is a (ξ , ι)-equilibrium and
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let (σ∗,α∗,µ∗) be a (ξ̃ , ι)-equilibrium derived via the previous lemma. Suppose

there exists ι̃ ∈ I such that players’ (ξ̃ , ι̃)-equilibrium payoffs strictly positive

and are different from their payoff under (σ∗,α∗,µ∗). Then, there exists a (ξ , ι̃)-

equilibrium in which the players’ payoffs are the same as in the (ξ̃ , ι̃)-equilibrium.

Proof. By the previous lemma,

VS (ξ , ι ,σ ,α) =VS

(
ξ̃ , ι ,σ∗,α∗

)
, VR (ξ , ι ,σ ,α) =VR

(
ξ̃ , ι ,σ∗,α∗

)
.

Suppose there exists ι̃ ∈ I and a tuple (σ̃ , α̃, µ̃) that is a (ξ̃ , ι̃)-equilibrium such
that

VR

(
ξ̃ , ι̃ , σ̃ , α̃

)
̸=VR

(
ξ̃ , ι ,σ∗,α∗

)
or VS

(
ξ̃ , ι ,σ∗,α∗

)
̸=VS

(
ξ̃ , ι̃ , σ̃ , α̃

)
> 0.

The goal is to construct a tuple (σ̂ , α̂, µ̂) that is a (ξ , ι̃)-equilibrium such that

Vj (ξ , ι̃ , σ̂ , α̂) =Vj

(
ξ̃ , ι̃ , σ̃ , α̃

)
∀ j ∈ {S,R} .

First, observe that it must be that σ̃(·) = σ∗(·) so that

ρ m̃1

(
ξ̃ , σ̃

)
= ρ m̃1

(
ξ̃ ,σ∗

)
.

Writing ρ ≡ ρ m̃1
(ξ̃ , σ̃), for each m1 ∈ Mξ

1 , let

σ̂ (m1) =
xξ (m1)

1−ρ

ρ

µ∗−µ0
µ0(1−µ∗)

α̂(ρ,σ̂) (m1) = α̃(ρ,σ̃) (m̃1) ,

where I write α(ρ,σ)(m) ≡ α(1|ρ,σ ,m1). By construction, I have ρm1
(ξ , σ̂) = ρ
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for all m1 ∈ Mξ

1 . Consider the Sender’s payoff first:

VS (ξ , ι̃ , σ̂ , α̂)

= ∑
m1∈Mξ

1

∫

[0,1]

[
1(ρ,1] (ρ)+ α̂(ρ,σ̂)(m1)1{ρ} (ρ)

]
[ξ (m1)ρ +(1−ρ)]dι̃ (ρ)

=
∫

[0,1]
1(ρ,1] (ρ)

[
ξ

(
Mξ

1

)
ρ +(1−ρ)

]
dι̃ (ρ)

+ ∑
m1∈Mξ

1

α̂(ρ,σ̂)(m1) [ξ (m1)ρ +(1−ρ)] ι̃ ({ρ})

=
∫

(ρ,1]

[
ξ̃ (m̃1)ρ +(1−ρ)

]
dι̃ (ρ)

+ α̃(ρ,σ̃) (m̃1)
[
ξ̃ (m̃1)ρ +(1−ρ)

]
ι̃ ({ρ})

=VS

(
ξ̃ , ι̃ , σ̃ , α̃

)
.

Now consider the Receiver’s payoff:

VR (ξ , ι̃ , σ̂ , α̂)

=
µ0 (1−µ∗)

µ∗

∫

[0,1]
∑

m1∈Mξ

1

α̂(ρ,σ̂) (m1)ρxξ (m1)dι̃ (ρ)

+
µ0 (1−µ∗)

µ∗

∫

[0,1]
∑

m1∈Mξ

1

α̂(ρ,σ̂) (m1)
(1−ρ)(µ0 −µ∗)

µ0 (1−µ∗)
σ̂ (m1)dι̃ (ρ)

=
1−µ∗

µ∗ µ0

∫

(ρ,1]

(
ρxξ̃ (m̃1)+(1−ρ)

µ0 −µ∗

µ0 (1−µ∗)

)
dι̃ (ρ)

+
1−µ∗

µ∗ µ0α̃(ρ,σ̃) (m̃1)

(
ρxξ̃ (m̃1)+(1−ρ)

µ0 −µ∗

µ0 (1−µ∗)

)
ι̃ ({ρ})

=VR

(
ξ̃ , ι̃ , σ̃ , α̃

)
.

Observe that I can appropriately define σ̂ , α̂ and µ̂ to ensure that (σ̂ , α̂, µ̂) is a
(ξ , ι̃)-equilibrium that yields the same payoffs for the players as (ξ̃ , ι̃ , σ̃ , α̃). ■

Let us now prove Lemma 1.

Lemma 1. Any strictly positive commitment equilibrium payoffs are attainable
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with an experiment ξ ∈ Ξ such that for some m0,m1 ∈ M, supp(ξ ) = {m0,m1},

ξ (m1|1) = 1, ξ (m1|0)≤ 1− µ∗−µ0
µ∗(1−µ0)

, and the unreliable Sender always sends m1.

Proof. By the previous two lemmata, given any (ξ , ι)-equilibrium with strictly pos-
itive Sender payoff, there exists a payoff equivalent (ξ̃ , ι)-equilibrium. Moreover, if
there exists a (ξ , ι̃)-equilibrium with different payoffs (such that Sender’s payoff is
still strictly positive), there exists (ξ̃ , ι̃)-equilibrium that obtains the same payoffs.
Thus, it is without loss to focus on the equivalence class of Ξ given by ξ̃ , which, in
turn, implies that I can focus on supp(ξ ) = {m0,m1} for some m0,m1 ∈ M and σ

such that |supp(σ)| = 1. We may assume that the unreliable Sender always sends
m1 and Mξ

1 = {m1}. Then, for any ι ∈ I ,

VS (ξ , ι ,σ ,α)

=
∫ [

1(
ρm1

,1
] (ρ)+1{

ρm1

} (ρ)α
(
1|ρm1

,σ
)]

[ρξ (m1)+(1−ρ)]dι (ρ) ,

where

ρm1
=

1−µ0
µ0

µ∗
1−µ∗ −1

1−µ0
µ0

µ∗
1−µ∗ −1+ξ (m1|1)−ξ (m1|0) 1−µ0

µ0

µ∗
1−µ∗

.

Since Mξ

1 = {m1}, it must be that

xξ (m1)> 0 ⇔ ξ (m1|1)> ξ (m1|0)
1−µ0

µ0

µ∗

1−µ∗ .

Observe that ξ (m1) = ξ (m1|1)µ0 + ξ (m1|0)(1− µ0) is increasing in ξ (m1|1) and
ρm1

is decreasing in ξ (m1|1), so that the Sender’s payoff is increasing in ξ (m1|1)
and, moreover, larger ξ (m1|1) relaxes the constraint on ξ (m1|0). It follows that
ξ (m1|1) = 1. This, together with the fact that Mξ

1 = {m1} implies ξ (m1|0) ≤ 1−
ρ . ■

Remark 2. Lemma 6 means that the simplification applies leaves the payoffs of
a Third Party whose preference is a linear combination of the Sender’s and the
Receiver’s preferences unchanged. Hence, 1 is applicable to delegation equilibrium
payoffs.
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A.4 Proof of Lemma 2

The Sender’s value correspondence given any experiment ρ̂ ∈ [ρ,1] is given by

VS (ρ|ρ̂) =





{0} if ρ < ρ̂[
0, µ0

µ∗

]
if ρ = ρ̂

{
1− µ∗−µ0

µ∗
ρ

ρ̂

}
if ρ > ρ̂

.

Figure 5 depicts VS(·|ρ̂) for three different types of experiments: the fully inform-
ative experiment (i.e., ρ̂ = ρ), a partially informative experiment (i.e., ρ̂ ∈ (ρ,1)),
and the Sender-preferred Bayesian persuasion experiment (i.e., ρ̂ = 1).

Figure 5: Sender’s value correspondence given experiment ρ̂: VS(·|ρ̂).

1

0

1

10

1

0

1

10

1

0

1

0

µ0

µ⇤
µ0

µ⇤
µ0

µ⇤

VS

⇢ = b⇢ b⇢ 2 (⇢, 1)⇢ b⇢ = 1⇢

VS VS

⇢⇢⇢
1 � µ⇤�µ0

µ⇤
1
⇢

1 � µ⇤�µ0

µ⇤
1
b⇢

Observe that the Sender’s value correspondence is single-valued except at ρ = ρ̂

and is otherwise affine. Standard arguments (Aumann and Maschler, 1968; Kamen-
ica and Gentzkow, 2011) mean that the minimal payoff for the Sender is given by
the convex envelope of minVS(·|ρ̂) (evaluated at the prior ρ0). The minimal payoff
is induced by the investigation, imin : [ρ,1]→ I , that I call the punishing investig-

ation strategy, and is given by

imin (ρ̂) :=





ρ0−ρ̂

1−ρ̂
δ1 +

1−ρ0
1−ρ̂

δρ̂ if ρ0 ≥ ρ and ρ̂ ∈ (ρ,ρ0)

δρ0 otherwise
. (6)

As in the introductory example, in the punishing investigation strategy, the Re-
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ceiver either chooses not to investigate or conducts a partially revealing investiga-
tion that always reveals that the Sender is unreliable but only sometimes reveal that
the Sender is reliable. Let us now prove Lemma 2.

Lemma 2. The Sender’s maxmin payoff is given by

V maxmin
S = max

{
0,
(

1− µ∗−µ0
µ∗

1
ρ̂maxmin

)
ρ0−ρ̂maxmin

1−ρ̂maxmin

}
,

where ρ̂maxmin = max
{

ρ,
(

1+
√

µ0
µ∗−µ0

1−ρ0
ρ0

)−1
}
∈ [ρ,ρ0).

Proof. Standard arguments (Aumann and Maschler, 1968; Kamenica and Gentzkow,
2011) mean that the minimal payoff for the Sender that can be induced by some in-
vestigation is given by the convex envelope of the function minVS(·|ρ̂) evaluated at
the prior ρ0.52 given by

vexminVS(·|ρ̂)(ρ0) =





(
1− µ∗−µ0

µ∗
1
ρ̂

)
ρ0−ρ̂

1−ρ̂
if ρ0 ∈ (0, ρ̂]

0 if ρ0 ∈ (ρ̂,1)

Suppose ρ0 < ρ . Then, not investigating ensures zero payoff for the Sender from
choosing for any ρ̂ ∈ [ρ,1]. Hence, V maxmin

S = 0. Suppose instead that ρ0 ≥ ρ .
If ρ̂ ≥ ρ0, once again, not investigating ensures that Sender’s payoff is zero. If
ρ̂ ∈ [ρ,ρ0), then the Sender’s problem is

max
ρ̂∈[ρ,ρ0)

(
1− µ∗−µ0

µ∗
1
ρ̂

)
ρ0−ρ̂

1−ρ̂
,

which is solved by ρ̂maxmin given in the lemma. ■

Remark 3. If ρ0 ≤ ρ0,0 := µ∗−µ0
µ∗

1
1−(2−µ∗)µ0

, then ρ̂maxmin = ρ . The maxmin exper-
iment, ρ̂maxmin, is strictly increasing in ρ0 ∈ (ρ0,1,1] while V maxmin

S is also strictly
increasing in ρ0 ∈ [ρ,1]. Moreover, limρ0→1 ρ̂maxmin = 1 and limρ0→1V maxmin

S = µ0
µ∗ .

52The function minVS(·|ρ̂) is well defined because VS(·|ρ̂) is non-empty- and compact-valued.
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A.5 Lemma 3

The Receiver’s value function given any experiment ρ̂ ∈ [ρ,1] is given by

VR (ρ|ρ̂) =





0 if ρ ≤ ρ̂

µ∗−µ0
µ0

(
ρ

ρ̂
−1
)

if ρ > ρ̂

.

Figure 6 depicts VR(·|ρ̂) for the three types of experiments: ρ̂ = ρ , ρ̂ ∈ (ρ,1), and
ρ̂ = 1. The figure shows that VR(·|ρ̂) is continuous and convex, and equals zero for
all ρ ≤ ρ̂ and increases linearly thereafter.

Figure 6: Receiver’s value function an experiment ρ̂ ∈ [ρ,1]: VR(·|ρ̂).
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Lemma 3. Any commitment equilibrium payoff can be obtained with the class of

investigations given by {ι∗(z) : z ∈ [ρ0,1]} ⊆ I , where

ι
∗ (z) :=





ρ0
z δz +

ρ0
z−ρ0

δ0 if z ∈ (ρ0,1]

δρ0 if z = ρ0

.

Proof. Fix some ρ̂ ∈ [ρ,1] and consider the following problem:

max
ι∈I

∫ 1

0
VR (ρ|ρ̂)dι (ρ) s.t.

∫ 1

0
maxVS (ρ|ρ̂)dι (ρ)≥V maxmin

S .

Because the fully revealing investigation (i.e., z = 1) maximises the Receiver’s ex-
pected payoff, if the Sender’s payoff under a fully revealing investigation is greater
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than her maxmin payoff, i.e., VS(1|ρ̂)ρ0 ≥V maxmin
S , then the fully revealing invest-

igation solves the problem above. So suppose instead that VS(1|ρ̂)ρ0 <V maxmin
S .

Consider first the case in which ρ0 ≥ ρ̂ . Then, the greatest payoff that the
Receiver can induce for the Sender is given by not investigating the Sender (i.e.,
z = ρ0). If the Sender’s maxmin payoff strictly exceeds the maximum Sender
payoff that the Receiver can induce with an investigation, then ρ̂ is not a feas-
ible solution to the Receiver’s problem. If they are equal, then the solution to the
problem is (ρ̂, i∗(ρ0)). So suppose that maxVS(ρ0|ρ̂)>V maxmin

S . Let us now argue
that a solution to the problem is the investigation with support at {0,z∗}, where
∫ 1

0 maxVS(·|ρ̂)dι∗(z∗) = V maxmin
S . Note first that z∗ is well-defined by the interme-

diate value theorem because ṽS(z) :=
∫ 1

0 maxVS(·|ρ̂)dι∗(z) is continuous in z and
maxVS(1|ρ̂)ρ0 <V maxmin

S < maxVS(ρ0|ρ̂). Moreover, z∗ is unique and z∗ > ρ̂ ≥ ρ0

because ṽS(·) is strictly increasing. Now take any investigation ι ∈ I that satisfies
the constraint. Because maxVS(·|ρ̂) and VR(·|ρ̂) are both affine on [0, ρ̂) and [ρ̂,1],
we may collapse the mass ι puts on the interval [0, ρ̂) to a single point in [0, ρ̂)
and also collapse the mass on the interval [ρ̂,1] to a single point in [ρ̂,1] via mean-
preserving contraction. The procedure gives us an investigation ι ′ with supports at
some z1 ∈ [0, ρ̂) and some z2 ∈ [ρ̂,1]. Moreover, we must have z2 ≤ z∗ for ι to have
satisfied the constraint. But observe that ι∗(z∗) obtained by spreading the mass at
z1 and z2 to {0,z∗} via a mean-preserving spread increases the Receiver’s payoff
(because VR(·|ρ̂) is convex) while ensuring that the constraint is satisfied (in fact,
binding). In other words, any investigation ι ∈I that satisfies the constraint can be
transformed into i∗(z∗) that still satisfies the constraint but leads to weakly greater
payoff for the Receiver.

Now consider the case in which ρ0 < ρ̂ . Then, the greatest payoff that the Re-
ceiver can induce for the Sender is given by an investigation i∗(ρ̂). If Sender’s
maxmin payoff strictly exceeds this maximum Sender payoff that the Receiver can
induce, then ρ̂ is not a feasible solution to the Receiver’s problem. If they are equal,
then the solution to the problem is (ρ̂, i∗(ρ̂)). So suppose that

∫ 1
0 maxVS(·|ρ̂)dι∗(ρ̂)>

V maxmin
S . Once again, there exists z∗> ρ0 such that

∫ 1
0 maxVS(·|ρ̂)dι∗(z∗)=V maxmin

S .
Moreover, since maxVS(·|ρ̂) = 0 on [0, ρ̂), we must have z∗ ≥ ρ̂ . In fact, z∗ > ρ̂ be-
cause

∫ 1
0 maxVS(·|ρ̂)dι∗(ρ̂) > V maxmin

S . But then the same procedure as described
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above means that starting from any investigation ι ∈ I that satisfies the constraint,
one can argue that ι∗(z∗) leads to an improvement for the Receiver while still satis-
fying the constraint. ■

A.6 Proof of Theorem 2

We are now ready to prove Theorem 2.

Theorem 2. For any ρ0 ∈ (0,1), the Receiver’s commitment equilibrium payoff is

given by

V ∗
R = min

{
V R,

µ0
µ∗ [(1−µ0)ρ0 +V maxmin

S ]−V maxmin
S , µ0

µ∗ −V maxmin
S

}
> 0. (7)

In particular, the Receiver’s commitment equilibrium payoff is strictly positive for

all interior prior belief, ρ0, about the Sender’s reliability. Moreover, for sufficiently

low ρ0, the Receiver is able to induce the Sender to choose the fully informative

experiment while simultaneously finding out the Sender’s reliability on the equilib-

rium path.

Proof of Theorem 2. Let V R :=VR(1|ρ)ρ0 =
(1−µ∗)µ0ρ0

µ∗ the Receiver’s payoff from
the ideal outcome (i.e., fully informative experiment and fully revealing invest-
igation). As noted in Remark 3, the Receiver can induce the Sender to choose
the fully informative experiment, ρ̂ = ρ , using a punishing investigation strategy
whenever ρ0 ≤ ρ0,0. Consider an investigation strategy i+ that maximally punishes
the Sender for choosing ρ̂ ̸= ρ and otherwise conducting a fully revealing invest-
igation; i.e., i+(ρ) = ρ0δ1 +(1−ρ0)δ0 and i+(ρ̂) = imin(ρ̂) for all ρ̂ ̸= ρ . Since
a fully revealing investigation is never part of a punishing investigation strategy,
the investigation strategy i incentivises the Sender to choose the fully informative
experiment a fortiori compared to the punishing investigation strategy. Thus, the
Receiver can obtain V R whenever ρ0 ≤ ρ0,0 with i. In fact, if ρ0 ∈ (ρ0,0,ρ0,1],
where ρ0,1 := (1+ µ0

µ∗−µ0
(1−√

µ∗)2)−1 ∈ (ρ0,0,1), the fully revealing experiment
can still be induced by i+ because the investigation guarantees that VS(1|ρ)ρ0 ≥
V maxmin

S —i.e. the Sender’s payoff from choosing the fully informative experiment
and the Receiver conducting a fully revealing investigation is greater than her max-
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imum payoff from deviating. Thus, for any ρ0 ∈ (0,ρ0,1], the Receiver can obtain
V R.

Suppose now that ρ0 > ρ0,1. Define ρ̂+ as the most informative experiment
that still ensures that the Sender attains her maxmin payoff when the Receiver fully
learns the Sender’s reliability; i.e.,

ρ̂
+ := min

{
ρ̂ ∈ [ρ,1] : VS (1|ρ̂)ρ0 ≥V maxmin

S

}
=

µ∗−µ0

µ∗
ρ0

ρ0 −V maxmin
S

.

That ρ0 > ρ0,1 implies ρ̂+ > ρ . Note that the Receiver can induce the Sender
to choose any experiment that is less informative than ρ̂+ (i.e., any experiment
ρ̂ ≥ ρ̂+) using i+ but among all such experiment, the Receiver clearly prefers ρ̂+.
To induce the Sender to choose any experiment that is more informative than ρ̂+

(i.e., any experiment ρ̂ ∈ [ρ, ρ̂+)), the Receiver must provide more incentive to the
Sender to choose such an experiment by conducting a partially revealing investig-
ation of the form 3. The commitment equilibrium payoff for the Receiver is given
by the solution to the following

max
(ρ̂,z)∈[ρ,ρ̂+]×[ρ0,1]

∫ 1

0
VR (ρ|ρ̂)dι

∗ (z)(ρ)

s.t.
∫ 1

0
maxVS (ρ|ρ̂)dι

∗ (z)(ρ)≥V maxmin
S .

I can substitute the parametric expressions for VR, maxVS and ι∗ to write the Sender’s
problem as

max
ρ̂∈[ρ,ρ̂+],z∈[ρ0,1]

µ∗−µ0

µ∗ ρ0

(
1
ρ̂
− 1

z

)
s.t. ρ̂ ≥ µ∗−µ0

µ∗
ρ0

ρ0
z −V maxmin

S
.

Because the objective is strictly decreasing in ρ̂ , at any optimal, either ρ̂ = ρ or the
constraint must bind so that

ρ̂
∗ = max

{
ρ,

µ∗−µ0

µ∗
ρ0

ρ0
z∗ −V maxmin

S

}
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If the constraint is binding at the optimal, then the objective is given by ρ0
z∗

µ0
µ∗ −

V maxmin
S , which is strictly decreasing in z. Moreover, we have

µ∗−µ0

µ∗
ρ0

ρ0
z −V maxmin

S
≥ ρ ⇔ z ≥ ρ0

V maxmin
S +(1−µ0)ρ0

.

Hence, if the constraint is binding at the optimal, then z∗ must satisfy the inequality
above with equality or equal to ρ0; i.e.,

z∗ = max
{

ρ0,
ρ0

V maxmin
S +(1−µ0)ρ0

}
=





ρ0
V maxmin

S +(1−µ0)ρ0
if ρ0 ∈ (ρ0,1,ρ0,2)

ρ0 if ρ0 ∈ [ρ0,2,1]
,

where ρ0,2 := µ0

µ∗(2−µ0)−2
√

µ∗(1−µ0)(µ∗−µ0)
∈ (ρ0,1,1). ■

Remark 4. Table 1 gives the on-equilibrium-path experiment and investigation as
well as the Receiver’s and Sender’s payoffs in the commitment equilibrium for vari-
ous regions of prior belief about reliability ρ0 identified in the proof above.

Table 1: Commitment equilibrium.

ρ0 ρ̂∗ z∗ V ∗
R V ∗

S
= 0 n/a n/a 0 0
∈ (0,ρ0,0] ρ 1 V R = 1−µ∗

µ∗ µ0ρ0 µ0ρ0

∈ (ρ0,0,ρ0,1] ρ 1 V R µ0ρ0

∈ (ρ0,1,ρ0,2] ρ
ρ0

V maxmin
S +(1−µ0)ρ0

µ0[(1−µ0)ρ0+V maxmin
S ]

µ∗ −V maxmin
S V maxmin

S > 0

∈ (ρ0,2,1)
µ∗−µ0

µ∗
ρ0

1−V maxmin
S

ρ0
µ0
µ∗ −V maxmin

S V maxmin
S > 0

= 1 1 n/a 0 µ0
µ∗ ρ0

A.7 Proof of Proposition 1

Proposition 1. The Receiver prefers delegating investigations to a purely adversarial

Third Party over a purely Receiver-aligned Third Party—strictly so if ρ0 ∈ [ρ,1).

Proof. The Receiver’s ∞-equilibrium payoff corresponds to the Receiver’s no-commitment
equilibrium payoff which is zero by Theorem 1. A 0-balanced Third Party’s se-
quential rational investigation is the punishing investigation strategy, (6). Recall
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from the proof of Lemma (2) that the Receiver does not investigate the Sender un-
der the punishing investigation strategy if ρ0 ∈ (0,ρ), and both players’ payoffs are
zero because no experiment is able to induce the Receiver to take action. If, in-
stead, ρ0 ∈ [ρ,1), the Sender chooses ρ̂maxmin < ρ0 so that the Receiver’s payoff is
strictly positive because any investigation must induce a posterior belief that yields
the Receiver some strictly positive payoff. ■

A.8 Proof of Theorem 3

A λ -balanced Third Party’s value correspondence given any experiment ρ̂ ∈ [ρ,1]
is given by

V λ
T (ρ|ρ̂) =





{0} if ρ < ρ̂[
0,− µ0

µ∗

]
if ρ = ρ̂

{
−
(

1− ρ

ρ̂

µ∗−µ0
µ∗

)
+λ

µ∗−µ0
µ∗

(
ρ

ρ̂
−1
)}

if ρ > ρ̂

.

In particular, for any ρ̂ ∈ [ρ,1), note that

V λ
T (1|ρ̂)≥ 0 ⇔ λ ≥

µ∗−µ0
µ∗ ρ̂ −1

1− ρ̂
=: Λ(ρ̂)

and Λ(·) is strictly increasing so that its inverse, Λ−1, is well defined.

Theorem 3. For any ρ0 ∈ (0,1), there exists λ ∗(ρ0) > 0 such that the Receiver’s

λ -equilibrium payoff is given by

V λ
R =





0 if λ < λ ∗ (ρ0)

1
1+λ ∗(ρ0)

µ0
µ∗ ρ0 if λ ≥ λ ∗ (ρ0)

Hence, the Receiver strictly prefers to delegate investigations to a λ ∗(ρ0)-balanced

Third Party over any other λ -balanced Third Party. Moreover, whenever the prior

belief that the Sender is reliable, ρ0, is sufficiently low, the Receiver’s λ ∗-equilibrium

payoff coincides with the Receiver’s commitment equilibrium payoff.
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Proof. Fix λ ∈ (0,∞). Suppose first that λ < Λ(ρ) = µ∗
1−µ∗ . Then, V λ

T (1|ρ̂) ≤ 0
for all ρ̂ ∈ [ρ,1]. Since Λ(ρ) ≤ Λ(ρ̂) for all ρ̂ ∈ [ρ,1], this means that for all
possible choice of experiment, the Third Party’s value correspondence looks like
the last case in Figure 2. Consequently, the (λ -balanced) Third Party’s sequentially
rational investigation strategy (which concavifies VT) corresponds to the punishing
investigation strategy imin(·). Thus, in this case, λ -equilibrium payoffs corresponds
to 0-equilibrium payoffs.

Suppose instead that λ ≥ Λ(ρ). For any ρ̂ ∈ (Λ−1(λ ),1], the sequentially ra-
tional investigation for the Third Party would be imin(ρ̂) as in the previous case.
However, for any ρ̂ ∈ [ρ,Λ−1(λ )), V λ

T (1|ρ̂) > 0 (the first case in Figure 2) so that
the sequentially rational investigation for the Third Party is fully revealing. Finally,
if ρ̂ = Λ−1(λ ), V λ

T (1|ρ̂) = 0 (the second case in Figure 2) so that the Third Party
is indifferent between the fully revealing investigation and imin(ρ̂)—let us suppose
that Third Party conducts a fully revealing investigation in this case.

Given the Third Party’s best response to the Sender’s experiment described
above, if ρ̂maxmin ≤ Λ−1(λ ) ⇔ λ ≥ Λ(ρ̂maxmin) , the Sender can attain payoffs
that are weakly lower than V maxmin

S by choosing any ρ̂ > Λ−1(λ ) or attain payoffs
that are weakly greater than V maxmin

S associated with choosing any ρ̂ ∈ [ρ,Λ−1(λ )]

under the fully revealing investigation. Since the Sender’s payoff is increasing in
ρ̂ given an investigation, the Sender would choose the experiment ρ̂ = Λ−1(λ ) to
attain a payoff of VS(1|Λ−1(λ ))ρ0. If, instead, ρ̂maxmin > Λ−1(λ ), the Sender can
attain payoffs associated with any experiment ρ̂ ∈ (Λ−1(λ ),1] under the punishing
investigation—the highest being V maxmin

S — or attain payoffs associated with any
experiment ρ̂ ∈ [ρ,Λ−1(λ )] under the fully revealing investigation—the highest
being VS(1|Λ−1(λ ))ρ0. Hence, the Sender chooses ρ̂ = Λ−1(λ ) if and only if
VS(1|Λ−1(λ ))ρ0 ≥V maxmin

S .
Recall from Remark 3 that ρ̂maxmin = ρ if ρ0 ∈ (0,ρ0,0] and ρ̂maxmin ∈ (ρ,ρ0) if

ρ0 ∈ (ρ0,0). If ρ0 ∈ [ρ,ρ0,0], since λ > Λ(ρ) by hypothesis, on the (λ -)equilibrium
path, the Sender chooses ρ̂∗ = Λ−1(λ ) and the Third Party conducts a fully reveal-
ing investigation. If, instead, ρ0 ∈ (ρ0,0,1), so that ρ̂maxmin > Λ−1(λ )> ρ , then the
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Sender chooses ρ̂∗ = Λ−1(λ ) if and only if

VS(1|Λ−1(λ ))ρ0 ≥V maxmin
S ⇔ Λ

−1(λ )≥ ρ̂
+.

Recall that when ρ0 ∈ [ρ0,0,ρ0,1], ρ̂+ ≤ ρ so that the inequality above holds; i.e., on
equilibrium path, the Sender chooses Λ−1(λ ) and the Third Party conducts a fully
revealing investigation. Note that, for any ρ0 ∈ (ρ0,0,1),

ρ̂
maxmin ≤ Λ

−1 (λ )⇔ λ ≥ 1−ρ̂maxmin

ρ̂maxmin =
√

µ0
µ∗−µ0

ρ0
1−ρ0

−1

and ρ̂+ < ρ̂maxmin. Hence, for any λ ≥
√

µ0
µ∗−µ0

ρ0
1−ρ0

− 1 and ρ0 ∈ (ρ0,0,1), we

have Λ−1 (λ ) ≥ ρ̂+. Moreover, for any ρ0 ∈ (ρ0,1,1), there exists a unique λ+ ∈
[ µ∗

1−µ∗ ,
√

µ0
µ∗−µ0

ρ0
1−ρ0

−1] such that Λ−1(λ )≥ ρ̂+ for all λ ≥ λ+ and Λ−1(λ )< ρ̂+

for all λ ∈ [1−µ∗
µ∗ ,λ+).

The argument above means that for any λ ≥ λ ∗ := max{ µ∗
1−µ∗ ,λ+}, the Re-

ceiver’s λ -equilibrium payoff is given by VR(1|Λ−1(λ ))ρ0 = 1
1+λ

ρ0. Hence, the
Receiver’s λ -equilibrium payoff is greater for when λ = λ ∗. Finally, observe that
for any ρ0 ∈ (0,ρ0,0), the Receiver’s λ ∗-equilibrium payoff equals V R which, in
turn, is also equal to the Receiver’s commitment equilibrium payoff. ■

Remark 5. Table 2 gives the on-equilibrium-path experiment and investigation as
well as the Receiver’s and Sender’s payoffs in the λ -equilibrium when λ ≥ λ ∗ for
various regions of prior belief about reliability ρ0. Recall that if λ < λ ∗, then λ -
equilibrium payoffs are the same as in 0-equilibrium.

Table 2: Delegation equilibrium if λ ≥ λ ∗.

ρ0 ρ̂∗ ι∗ V λ
R V λ

S
= 0 n/a n/a 0 0

∈ (0,ρ0,0] ρ Fully revealing V R = 1−µ∗
µ∗ µ0ρ0 µ0ρ0

∈ (ρ0,0,1] Λ−1(λ ) Fully revealing 1
1+λ

µ0
µ∗ ρ0

λ

1+λ

µ0
µ∗ ρ0

= 1 1 n/a 0 µ0
µ∗ ρ0
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